Getting Started with Impala

Author: John Russell
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491905746
Release Date: 2014-09-25
Genre: Computers

Learn how to write, tune, and port SQL queries and other statements for a Big Data environment, using Impala—the massively parallel processing SQL query engine for Apache Hadoop. The best practices in this practical guide help you design database schemas that not only interoperate with other Hadoop components, and are convenient for administers to manage and monitor, but also accommodate future expansion in data size and evolution of software capabilities. Written by John Russell, documentation lead for the Cloudera Impala project, this book gets you working with the most recent Impala releases quickly. Ideal for database developers and business analysts, the latest revision covers analytics functions, complex types, incremental statistics, subqueries, and submission to the Apache incubator. Getting Started with Impala includes advice from Cloudera’s development team, as well as insights from its consulting engagements with customers. Learn how Impala integrates with a wide range of Hadoop components Attain high performance and scalability for huge data sets on production clusters Explore common developer tasks, such as porting code to Impala and optimizing performance Use tutorials for working with billion-row tables, date- and time-based values, and other techniques Learn how to transition from rigid schemas to a flexible model that evolves as needs change Take a deep dive into joins and the roles of statistics

Learning Cloudera Impala

Author: Avkash Chauhan
Publisher: Packt Publishing Ltd
ISBN: 9781783281282
Release Date: 2013-12-24
Genre: Computers

This book is an easy-to-follow, step-by-step tutorial where each chapter takes your knowledge to the next level. The book covers practical knowledge with tips to implement this knowledge in real-world scenarios. A chapter with a real-life example is included to help you understand the concepts in full.Using Cloudera Impala is for those who really want to take advantage of their Hadoop cluster by processing extremely large amounts of raw data in Hadoop at real-time speed. Prior knowledge of Hadoop and some exposure to HIVE and MapReduce is expected.

Using Flume

Author: Hari Shreedharan
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491905340
Release Date: 2014-09-16
Genre: Computers

How can you get your data from frontend servers to Hadoop in near real time? With this complete reference guide, you’ll learn Flume’s rich set of features for collecting, aggregating, and writing large amounts of streaming data to the Hadoop Distributed File System (HDFS), Apache HBase, SolrCloud, Elastic Search, and other systems. Using Flume shows operations engineers how to configure, deploy, and monitor a Flume cluster, and teaches developers how to write Flume plugins and custom components for their specific use-cases. You’ll learn about Flume’s design and implementation, as well as various features that make it highly scalable, flexible, and reliable. Code examples and exercises are available on GitHub. Learn how Flume provides a steady rate of flow by acting as a buffer between data producers and consumers Dive into key Flume components, including sources that accept data and sinks that write and deliver it Write custom plugins to customize the way Flume receives, modifies, formats, and writes data Explore APIs for sending data to Flume agents from your own applications Plan and deploy Flume in a scalable and flexible way—and monitor your cluster once it’s running

SQL on Big Data

Author: Sumit Pal
Publisher: Apress
ISBN: 9781484222478
Release Date: 2016-11-17
Genre: Computers

Learn various commercial and open source products that perform SQL on Big Data platforms. You will understand the architectures of the various SQL engines being used and how the tools work internally in terms of execution, data movement, latency, scalability, performance, and system requirements. This book consolidates in one place solutions to the challenges associated with the requirements of speed, scalability, and the variety of operations needed for data integration and SQL operations. After discussing the history of the how and why of SQL on Big Data, the book provides in-depth insight into the products, architectures, and innovations happening in this rapidly evolving space. SQL on Big Data discusses in detail the innovations happening, the capabilities on the horizon, and how they solve the issues of performance and scalability and the ability to handle different data types. The book covers how SQL on Big Data engines are permeating the OLTP, OLAP, and Operational analytics space and the rapidly evolving HTAP systems. You will learn the details of: Batch Architectures—Understand the internals and how the existing Hive engine is built and how it is evolving continually to support new features and provide lower latency on queries Interactive Architectures—Understanding how SQL engines are architected to support low latency on large data sets Streaming Architectures—Understanding how SQL engines are architected to support queries on data in motion using in-memory and lock-free data structures Operational Architectures—Understanding how SQL engines are architected for transactional and operational systems to support transactions on Big Data platforms Innovative Architectures—Explore the rapidly evolving newer SQL engines on Big Data with innovative ideas and concepts Who This Book Is For: Business analysts, BI engineers, developers, data scientists and architects, and quality assurance professionals/div

Hadoop Application Architectures

Author: Mark Grover
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491900079
Release Date: 2015-06-30
Genre: Computers

Get expert guidance on architecting end-to-end data management solutions with Apache Hadoop. While many sources explain how to use various components in the Hadoop ecosystem, this practical book takes you through architectural considerations necessary to tie those components together into a complete tailored application, based on your particular use case. To reinforce those lessons, the book’s second section provides detailed examples of architectures used in some of the most commonly found Hadoop applications. Whether you’re designing a new Hadoop application, or planning to integrate Hadoop into your existing data infrastructure, Hadoop Application Architectures will skillfully guide you through the process. This book covers: Factors to consider when using Hadoop to store and model data Best practices for moving data in and out of the system Data processing frameworks, including MapReduce, Spark, and Hive Common Hadoop processing patterns, such as removing duplicate records and using windowing analytics Giraph, GraphX, and other tools for large graph processing on Hadoop Using workflow orchestration and scheduling tools such as Apache Oozie Near-real-time stream processing with Apache Storm, Apache Spark Streaming, and Apache Flume Architecture examples for clickstream analysis, fraud detection, and data warehousing

Programming Hive

Author: Edward Capriolo
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449319335
Release Date: 2012-09-26
Genre: Computers

Describes the features and functions of Apache Hive, the data infrastructure for Hadoop.

Learning Hadoop 2

Author: Garry Turkington
Publisher: Packt Publishing Ltd
ISBN: 9781783285525
Release Date: 2015-02-13
Genre: Computers

If you are a system or application developer interested in learning how to solve practical problems using the Hadoop framework, then this book is ideal for you. You are expected to be familiar with the Unix/Linux command-line interface and have some experience with the Java programming language. Familiarity with Hadoop would be a plus.

Hadoop For Dummies

Author: Dirk deRoos
Publisher: John Wiley & Sons
ISBN: 9781118607558
Release Date: 2014-04-14
Genre: Computers

Let Hadoop For Dummies help harness the power of your data and rein in the information overload Big data has become big business, and companies and organizations of all sizes are struggling to find ways to retrieve valuable information from their massive data sets with becoming overwhelmed. Enter Hadoop and this easy-to-understand For Dummies guide. Hadoop For Dummies helps readers understand the value of big data, make a business case for using Hadoop, navigate the Hadoop ecosystem, and build and manage Hadoop applications and clusters. Explains the origins of Hadoop, its economic benefits, and its functionality and practical applications Helps you find your way around the Hadoop ecosystem, program MapReduce, utilize design patterns, and get your Hadoop cluster up and running quickly and easily Details how to use Hadoop applications for data mining, web analytics and personalization, large-scale text processing, data science, and problem-solving Shows you how to improve the value of your Hadoop cluster, maximize your investment in Hadoop, and avoid common pitfalls when building your Hadoop cluster From programmers challenged with building and maintaining affordable, scaleable data systems to administrators who must deal with huge volumes of information effectively and efficiently, this how-to has something to help you with Hadoop.

Data Algorithms

Author: Mahmoud Parsian
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491906156
Release Date: 2015-07-13
Genre: Computers

If you are ready to dive into the MapReduce framework for processing large datasets, this practical book takes you step by step through the algorithms and tools you need to build distributed MapReduce applications with Apache Hadoop or Apache Spark. Each chapter provides a recipe for solving a massive computational problem, such as building a recommendation system. You’ll learn how to implement the appropriate MapReduce solution with code that you can use in your projects. Dr. Mahmoud Parsian covers basic design patterns, optimization techniques, and data mining and machine learning solutions for problems in bioinformatics, genomics, statistics, and social network analysis. This book also includes an overview of MapReduce, Hadoop, and Spark. Topics include: Market basket analysis for a large set of transactions Data mining algorithms (K-means, KNN, and Naive Bayes) Using huge genomic data to sequence DNA and RNA Naive Bayes theorem and Markov chains for data and market prediction Recommendation algorithms and pairwise document similarity Linear regression, Cox regression, and Pearson correlation Allelic frequency and mining DNA Social network analysis (recommendation systems, counting triangles, sentiment analysis)

Hadoop Security

Author: Ben Spivey
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491901342
Release Date: 2015-06-29
Genre: Computers

As more corporations turn to Hadoop to store and process their most valuable data, the risk of a potential breach of those systems increases exponentially. This practical book not only shows Hadoop administrators and security architects how to protect Hadoop data from unauthorized access, it also shows how to limit the ability of an attacker to corrupt or modify data in the event of a security breach. Authors Ben Spivey and Joey Echeverria provide in-depth information about the security features available in Hadoop, and organize them according to common computer security concepts. You’ll also get real-world examples that demonstrate how you can apply these concepts to your use cases. Understand the challenges of securing distributed systems, particularly Hadoop Use best practices for preparing Hadoop cluster hardware as securely as possible Get an overview of the Kerberos network authentication protocol Delve into authorization and accounting principles as they apply to Hadoop Learn how to use mechanisms to protect data in a Hadoop cluster, both in transit and at rest Integrate Hadoop data ingest into enterprise-wide security architecture Ensure that security architecture reaches all the way to end-user access

Apache Hive Cookbook

Author: Hanish Bansal
Publisher: Packt Publishing Ltd
ISBN: 9781782161097
Release Date: 2016-04-29
Genre: Computers

Easy, hands-on recipes to help you understand Hive and its integration with frameworks that are used widely in today's big data world About This Book Grasp a complete reference of different Hive topics. Get to know the latest recipes in development in Hive including CRUD operations Understand Hive internals and integration of Hive with different frameworks used in today's world. Who This Book Is For The book is intended for those who want to start in Hive or who have basic understanding of Hive framework. Prior knowledge of basic SQL command is also required What You Will Learn Learn different features and offering on the latest Hive Understand the working and structure of the Hive internals Get an insight on the latest development in Hive framework Grasp the concepts of Hive Data Model Master the key concepts like Partition, Buckets and Statistics Know how to integrate Hive with other frameworks such as Spark, Accumulo, etc In Detail Hive was developed by Facebook and later open sourced in Apache community. Hive provides SQL like interface to run queries on Big Data frameworks. Hive provides SQL like syntax also called as HiveQL that includes all SQL capabilities like analytical functions which are the need of the hour in today's Big Data world. This book provides you easy installation steps with different types of metastores supported by Hive. This book has simple and easy to learn recipes for configuring Hive clients and services. You would also learn different Hive optimizations including Partitions and Bucketing. The book also covers the source code explanation of latest Hive version. Hive Query Language is being used by other frameworks including spark. Towards the end you will cover integration of Hive with these frameworks. Style and approach Starting with the basics and covering the core concepts with the practical usage, this book is a complete guide to learn and explore Hive offerings.

Apache Oozie

Author: Mohammad Kamrul Islam
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449369774
Release Date: 2015-05-12
Genre: Computers

Get a solid grounding in Apache Oozie, the workflow scheduler system for managing Hadoop jobs. With this hands-on guide, two experienced Hadoop practitioners walk you through the intricacies of this powerful and flexible platform, with numerous examples and real-world use cases. Once you set up your Oozie server, you’ll dive into techniques for writing and coordinating workflows, and learn how to write complex data pipelines. Advanced topics show you how to handle shared libraries in Oozie, as well as how to implement and manage Oozie’s security capabilities. Install and configure an Oozie server, and get an overview of basic concepts Journey through the world of writing and configuring workflows Learn how the Oozie coordinator schedules and executes workflows based on triggers Understand how Oozie manages data dependencies Use Oozie bundles to package several coordinator apps into a data pipeline Learn about security features and shared library management Implement custom extensions and write your own EL functions and actions Debug workflows and manage Oozie’s operational details

Apache Sqoop Cookbook

Author: Kathleen Ting
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449364588
Release Date: 2013-07-02
Genre: Computers

Integrating data from multiple sources is essential in the age of big data, but it can be a challenging and time-consuming task. This handy cookbook provides dozens of ready-to-use recipes for using Apache Sqoop, the command-line interface application that optimizes data transfers between relational databases and Hadoop. Sqoop is both powerful and bewildering, but with this cookbook’s problem-solution-discussion format, you’ll quickly learn how to deploy and then apply Sqoop in your environment. The authors provide MySQL, Oracle, and PostgreSQL database examples on GitHub that you can easily adapt for SQL Server, Netezza, Teradata, or other relational systems. Transfer data from a single database table into your Hadoop ecosystem Keep table data and Hadoop in sync by importing data incrementally Import data from more than one database table Customize transferred data by calling various database functions Export generated, processed, or backed-up data from Hadoop to your database Run Sqoop within Oozie, Hadoop’s specialized workflow scheduler Load data into Hadoop’s data warehouse (Hive) or database (HBase) Handle installation, connection, and syntax issues common to specific database vendors

Big Data Analytics with Spark

Author: Mohammed Guller
Publisher: Apress
ISBN: 9781484209646
Release Date: 2015-12-29
Genre: Computers

Big Data Analytics with Spark is a step-by-step guide for learning Spark, which is an open-source fast and general-purpose cluster computing framework for large-scale data analysis. You will learn how to use Spark for different types of big data analytics projects, including batch, interactive, graph, and stream data analysis as well as machine learning. In addition, this book will help you become a much sought-after Spark expert. Spark is one of the hottest Big Data technologies. The amount of data generated today by devices, applications and users is exploding. Therefore, there is a critical need for tools that can analyze large-scale data and unlock value from it. Spark is a powerful technology that meets that need. You can, for example, use Spark to perform low latency computations through the use of efficient caching and iterative algorithms; leverage the features of its shell for easy and interactive Data analysis; employ its fast batch processing and low latency features to process your real time data streams and so on. As a result, adoption of Spark is rapidly growing and is replacing Hadoop MapReduce as the technology of choice for big data analytics. This book provides an introduction to Spark and related big-data technologies. It covers Spark core and its add-on libraries, including Spark SQL, Spark Streaming, GraphX, and MLlib. Big Data Analytics with Spark is therefore written for busy professionals who prefer learning a new technology from a consolidated source instead of spending countless hours on the Internet trying to pick bits and pieces from different sources. The book also provides a chapter on Scala, the hottest functional programming language, and the program that underlies Spark. You’ll learn the basics of functional programming in Scala, so that you can write Spark applications in it. What's more, Big Data Analytics with Spark provides an introduction to other big data technologies that are commonly used along with Spark, like Hive, Avro, Kafka and so on. So the book is self-sufficient; all the technologies that you need to know to use Spark are covered. The only thing that you are expected to know is programming in any language. There is a critical shortage of people with big data expertise, so companies are willing to pay top dollar for people with skills in areas like Spark and Scala. So reading this book and absorbing its principles will provide a boost—possibly a big boost—to your career.

Hadoop Operations

Author: Eric Sammer
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449327293
Release Date: 2012-09-26
Genre: Computers

If you’ve been asked to maintain large and complex Hadoop clusters, this book is a must. Demand for operations-specific material has skyrocketed now that Hadoop is becoming the de facto standard for truly large-scale data processing in the data center. Eric Sammer, Principal Solution Architect at Cloudera, shows you the particulars of running Hadoop in production, from planning, installing, and configuring the system to providing ongoing maintenance. Rather than run through all possible scenarios, this pragmatic operations guide calls out what works, as demonstrated in critical deployments. Get a high-level overview of HDFS and MapReduce: why they exist and how they work Plan a Hadoop deployment, from hardware and OS selection to network requirements Learn setup and configuration details with a list of critical properties Manage resources by sharing a cluster across multiple groups Get a runbook of the most common cluster maintenance tasks Monitor Hadoop clusters—and learn troubleshooting with the help of real-world war stories Use basic tools and techniques to handle backup and catastrophic failure