ggplot2

Author: Hadley Wickham
Publisher: Springer
ISBN: 9783319242774
Release Date: 2016-06-08
Genre: Computers

This new edition to the classic book by ggplot2 creator Hadley Wickham highlights compatibility with knitr and RStudio. ggplot2 is a data visualization package for R that helps users create data graphics, including those that are multi-layered, with ease. With ggplot2, it's easy to: produce handsome, publication-quality plots with automatic legends created from the plot specification superimpose multiple layers (points, lines, maps, tiles, box plots) from different data sources with automatically adjusted common scales add customizable smoothers that use powerful modeling capabilities of R, such as loess, linear models, generalized additive models, and robust regression save any ggplot2 plot (or part thereof) for later modification or reuse create custom themes that capture in-house or journal style requirements and that can easily be applied to multiple plots approach a graph from a visual perspective, thinking about how each component of the data is represented on the final plot This book will be useful to everyone who has struggled with displaying data in an informative and attractive way. Some basic knowledge of R is necessary (e.g., importing data into R). ggplot2 is a mini-language specifically tailored for producing graphics, and you'll learn everything you need in the book. After reading this book you'll be able to produce graphics customized precisely for your problems, and you'll find it easy to get graphics out of your head and on to the screen or page.

ggplot2

Author: Hadley Wickham
Publisher: Springer Science & Business Media
ISBN: 9780387981413
Release Date: 2009-10-03
Genre: Computers

Provides both rich theory and powerful applications Figures are accompanied by code required to produce them Full color figures

Ggplot2

Author:
Publisher: Springer
ISBN: 9780387981420
Release Date: 2009
Genre:


The Grammar of Graphics

Author: Leland Wilkinson
Publisher: Springer Science & Business Media
ISBN: 9781475731002
Release Date: 2013-03-09
Genre: Computers

Written for statisticians, computer scientists, geographers, research and applied scientists, and others interested in visualizing data, this book presents a unique foundation for producing almost every quantitative graphic found in scientific journals, newspapers, statistical packages, and data visualization systems. It was designed for a distributed computing environment, with special attention given to conserving computer code and system resources. While the tangible result of this work is a Java production graphics library, the text focuses on the deep structures involved in producing quantitative graphics from data. It investigates the rules that underlie pie charts, bar charts, scatterplots, function plots, maps, mosaics, and radar charts. These rules are abstracted from the work of Bertin, Cleveland, Kosslyn, MacEachren, Pinker, Tufte, Tukey, Tobler, and other theorists of quantitative graphics.

R Graphics Cookbook

Author: Winston Chang
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449316952
Release Date: 2013
Genre: Computers

"Practical recipes for visualizing data"--Cover.

Interactive and Dynamic Graphics for Data Analysis

Author: Dianne Cook
Publisher: Springer Science & Business Media
ISBN: 9780387717616
Release Date: 2007-12-12
Genre: Computers

This book is about using interactive and dynamic plots on a computer screen as part of data exploration and modeling, both alone and as a partner with static graphics and non-graphical computational methods. The area of int- active and dynamic data visualization emerged within statistics as part of research on exploratory data analysis in the late 1960s, and it remains an active subject of research today, as its use in practice continues to grow. It now makes substantial contributions within computer science as well, as part of the growing ?elds of information visualization and data mining, especially visual data mining. The material in this book includes: • An introduction to data visualization, explaining how it di?ers from other types of visualization. • Adescriptionofourtoolboxofinteractiveanddynamicgraphicalmethods. • An approach for exploring missing values in data. • An explanation of the use of these tools in cluster analysis and supervised classi?cation. • An overview of additional material available on the web. • A description of the data used in the analyses and exercises. The book’s examples use the software R and GGobi. R (Ihaka & Gent- man 1996, RDevelopment CoreTeam2006) isafreesoftware environment for statistical computing and graphics; it is most often used from the command line, provides a wide variety of statistical methods, and includes high–quality staticgraphics.RaroseintheStatisticsDepartmentoftheUniversityofAu- land and is now developed and maintained by a global collaborative e?ort.

R for Data Science

Author: Hadley Wickham
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491910368
Release Date: 2016-12-12
Genre: Computers

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way. You’ll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results

Lattice

Author: Deepayan Sarkar
Publisher: Springer Science & Business Media
ISBN: 0387759697
Release Date: 2008-02-15
Genre: Mathematics

Written by the author of the lattice system, this book describes lattice in considerable depth, beginning with the essentials and systematically delving into specific low levels details as necessary. No prior experience with lattice is required to read the book, although basic familiarity with R is assumed. The book contains close to 150 figures produced with lattice. Many of the examples emphasize principles of good graphical design; almost all use real data sets that are publicly available in various R packages. All code and figures in the book are also available online, along with supplementary material covering more advanced topics.

R Graphics Second Edition

Author: Paul Murrell
Publisher: CRC Press
ISBN: 9781439831779
Release Date: 2016-04-19
Genre: Computers

Extensively updated to reflect the evolution of statistics and computing, the second edition of the bestselling R Graphics comes complete with new packages and new examples. Paul Murrell, widely known as the leading expert on R graphics, has developed an in-depth resource that helps both neophyte and seasoned users master the intricacies of R graphics. New in the Second Edition Updated information on the core graphics engine, the traditional graphics system, the grid graphics system, and the lattice package A new chapter on the ggplot2 package New chapters on applications and extensions of R Graphics, including geographic maps, dynamic and interactive graphics, and node-and-edge graphs Organized into five parts, R Graphics covers both "traditional" and newer, R-specific graphics systems. The book reviews the graphics facilities of the R language and describes R’s powerful grid graphics system. It then covers the graphics engine, which represents a common set of fundamental graphics facilities, and provides a series of brief overviews of the major areas of application for R graphics and the major extensions of R graphics.

Graphics for Statistics and Data Analysis with R

Author: Kevin J Keen
Publisher: CRC Press
ISBN: 9781584880875
Release Date: 2010-04-26
Genre: Mathematics

Graphics for Statistics and Data Analysis with R presents the basic principles of sound graphical design and applies these principles to engaging examples using the graphical functions available in R. It offers a wide array of graphical displays for the presentation of data, including modern tools for data visualization and representation. The book considers graphical displays of a single discrete variable, a single continuous variable, and then two or more of each of these. It includes displays and the R code for producing the displays for the dot chart, bar chart, pictographs, stemplot, boxplot, and variations on the quantile-quantile plot. The author discusses nonparametric and parametric density estimation, diagnostic plots for the simple linear regression model, polynomial regression, and locally weighted polynomial regression for producing a smooth curve through data on a scatterplot. The last chapter illustrates visualizing multivariate data with examples using Trellis graphics. Showing how to use graphics to display or summarize data, this text provides best practice guidelines for producing and choosing among graphical displays. It also covers the most effective graphing functions in R. R code is available for download on the book’s website.

Graphical Data Analysis with R

Author: Antony Unwin
Publisher: CRC Press
ISBN: 9781498786775
Release Date: 2016-04-16
Genre: Mathematics

See How Graphics Reveal Information Graphical Data Analysis with R shows you what information you can gain from graphical displays. The book focuses on why you draw graphics to display data and which graphics to draw (and uses R to do so). All the datasets are available in R or one of its packages and the R code is available at rosuda.org/GDA. Graphical data analysis is useful for data cleaning, exploring data structure, detecting outliers and unusual groups, identifying trends and clusters, spotting local patterns, evaluating modelling output, and presenting results. This book guides you in choosing graphics and understanding what information you can glean from them. It can be used as a primary text in a graphical data analysis course or as a supplement in a statistics course. Colour graphics are used throughout.

Data Analysis and Graphics Using R

Author: John Maindonald
Publisher: Cambridge University Press
ISBN: 9781139486675
Release Date: 2010-05-06
Genre: Computers

Discover what you can do with R! Introducing the R system, covering standard regression methods, then tackling more advanced topics, this book guides users through the practical, powerful tools that the R system provides. The emphasis is on hands-on analysis, graphical display, and interpretation of data. The many worked examples, from real-world research, are accompanied by commentary on what is done and why. The companion website has code and datasets, allowing readers to reproduce all analyses, along with solutions to selected exercises and updates. Assuming basic statistical knowledge and some experience with data analysis (but not R), the book is ideal for research scientists, final-year undergraduate or graduate-level students of applied statistics, and practising statisticians. It is both for learning and for reference. This third edition expands upon topics such as Bayesian inference for regression, errors in variables, generalized linear mixed models, and random forests.

Learn ggplot2 Using Shiny App

Author: Keon-Woong Moon
Publisher: Springer
ISBN: 9783319530192
Release Date: 2017-04-13
Genre: Computers

This book and app is for practitioners, professionals, researchers, and students who want to learn how to make a plot within the R environment using ggplot2, step-by-step without coding. In widespread use in the statistical communities, R is a free software language and environment for statistical programming and graphics. Many users find R to have a steep learning curve but to be extremely useful once overcome. ggplot2 is an extremely popular package tailored for producing graphics within R but which requires coding and has a steep learning curve itself, and Shiny is an open source R package that provides a web framework for building web applications using R without requiring HTML, CSS, or JavaScript. This manual—"integrating" R, ggplot2, and Shiny—introduces a new Shiny app, Learn ggplot2, that allows users to make plots easily without coding. With the Learn ggplot2 Shiny app, users can make plots using ggplot2 without having to code each step, reducing typos and error messages and allowing users to become familiar with ggplot2 code. The app makes it easy to apply themes, make multiplots (combining several plots into one plot), and download plots as PNG, PDF, or PowerPoint files with editable vector graphics. Users can also make plots on any computer or smart phone. Learn ggplot2 Using Shiny App allows users to Make publication-ready plots in minutes without coding Download plots with desired width, height, and resolution Plot and download plots in png, pdf, and PowerPoint formats, with or without R code and with editable vector graphics

R in Action

Author: Robert Kabacoff
Publisher: Manning Publications
ISBN: 1617291382
Release Date: 2015-03-03
Genre: Computers

R is a powerful language for statistical computing and graphics that can handle virtually any data-crunching task. It runs on all important platforms and provides thousands of useful specialized modules and utilities. This makes R a great way to get meaningful information from mountains of raw data. R in Action, Second Edition is a language tutorial focused on practical problems. Written by a research methodologist, it takes a direct and modular approach to quickly give readers the information they need to produce useful results. Focusing on realistic data analyses and a comprehensive integration of graphics, it follows the steps that real data analysts use to acquire their data, get it into shape, analyze it, and produce meaningful results that they can provide to clients. Purchase of the print book comes with an offer of a free PDF eBook from Manning. Also available is all code from the book.

Data Wrangling with R

Author: Bradley Boehmke
Publisher: Springer
ISBN: 9783319455990
Release Date: 2016-11-17
Genre: Computers

This guide for practicing statisticians, data scientists, and R users and programmers will teach the essentials of preprocessing: data leveraging the R programming language to easily and quickly turn noisy data into usable pieces of information. Data wrangling, which is also commonly referred to as data munging, transformation, manipulation, janitor work, etc., can be a painstakingly laborious process. Roughly 80% of data analysis is spent on cleaning and preparing data; however, being a prerequisite to the rest of the data analysis workflow (visualization, analysis, reporting), it is essential that one become fluent and efficient in data wrangling techniques. This book will guide the user through the data wrangling process via a step-by-step tutorial approach and provide a solid foundation for working with data in R. The author's goal is to teach the user how to easily wrangle data in order to spend more time on understanding the content of the data. By the end of the book, the user will have learned: How to work with different types of data such as numerics, characters, regular expressions, factors, and dates The difference between different data structures and how to create, add additional components to, and subset each data structure How to acquire and parse data from locations previously inaccessible How to develop functions and use loop control structures to reduce code redundancy How to use pipe operators to simplify code and make it more readable How to reshape the layout of data and manipulate, summarize, and join data sets