Google BigQuery Analytics

Author: Jordan Tigani
Publisher: John Wiley & Sons
ISBN: 9781118824795
Release Date: 2014-05-21
Genre: Computers

How to effectively use BigQuery, avoid common mistakes, and execute sophisticated queries against large datasets Google BigQuery Analytics is the perfect guide for business and data analysts who want the latest tips on running complex queries and writing code to communicate with the BigQuery API. The book uses real-world examples to demonstrate current best practices and techniques, and also explains and demonstrates streaming ingestion, transformation via Hadoop in Google Compute engine, AppEngine datastore integration, and using GViz with Tableau to generate charts of query results. In addition to the mechanics of BigQuery, the book also covers the architecture of the underlying Dremel query engine, providing a thorough understanding that leads to better query results. Features a companion website that includes all code and data sets from the book Uses real-world examples to explain everything analysts need to know to effectively use BigQuery Includes web application examples coded in Python

Learning Google BigQuery

Author: Thirukkumaran Haridass
Publisher: Packt Publishing Ltd
ISBN: 9781787286290
Release Date: 2017-12-22
Genre: Computers

Get a fundamental understanding of how Google BigQuery works by analyzing and querying large datasets About This Book Get started with BigQuery API and write custom applications using it Learn how BigQuery API can be used for storing, managing, and query massive datasets with ease A practical guide with examples and use-cases to teach you everything you need to know about Google BigQuery Who This Book Is For If you are a developer, data analyst, or a data scientist looking to run complex queries over thousands of records in seconds, this book will help you. No prior experience of working with BigQuery is assumed. What You Will Learn Get a hands-on introduction to Google Cloud Platform and its services Understand the different data types supported by Google BigQuery Migrate your enterprise data to BigQuery and query it using the legacy and standard SQL techniques Use partition tables in your project and query external data sources and wild card tables Create tables and data sets dynamically using the BigQuery API Perform real-time inserting of records for analytics using Python and C# Visualize your BigQuery data by connecting it to third party tools such as Tableau and R Master the Google Cloud Pub/Sub for implementing real-time reporting and analytics of your Big Data In Detail Google BigQuery is a popular cloud data warehouse for large-scale data analytics. This book will serve as a comprehensive guide to mastering BigQuery, and how you can utilize it to quickly and efficiently get useful insights from your Big Data. You will begin with getting a quick overview of the Google Cloud Platform and the various services it supports. Then, you will be introduced to the Google BigQuery API and how it fits within in the framework of GCP. The book covers useful techniques to migrate your existing data from your enterprise to Google BigQuery, as well as readying and optimizing it for analysis. You will perform basic as well as advanced data querying using BigQuery, and connect the results to various third party tools for reporting and visualization purposes such as R and Tableau. If you're looking to implement real-time reporting of your streaming data running in your enterprise, this book will also help you. This book also provides tips, best practices and mistakes to avoid while working with Google BigQuery and services that interact with it. By the time you're done with it, you will have set a solid foundation in working with BigQuery to solve even the trickiest of data problems. Style and Approach This book follows a step-by-step approach to teach readers the concepts of Google BigQuery using SQL. To explain various data querying processes, large-scale datasets are used wherever required.

Practical Google Analytics and Google Tag Manager for Developers

Author: Jonathan Weber
Publisher: Apress
ISBN: 9781484202654
Release Date: 2015-11-05
Genre: Computers

Whether you’re a marketer with development skills or a full-on web developer/analyst, Practical Google Analytics and Google Tag Manager for Developers shows you how to implement Google Analytics using Google Tag Manager to jumpstart your web analytics measurement. There’s a reason that so many organizations use Google Analytics. Effective collection of data with Google Analytics can reduce customer acquisition costs, provide priceless feedback on new product initiatives, and offer insights that will grow a customer or client base. So where does Google Tag Manager fit in? Google Tag Manager allows for unprecedented collaboration between marketing and technical teams, lightning fast updates to your site, and standardization of the most common tags for on-site tracking an d marketing efforts. To achieve the rich data you're really after to better serve your users’ needs, you'll need the tools Google Tag Manager provides for a best-in-class implementation of Google Analytics measurement on your site. Written by data evangelist and Google Analytics expert Jonathan Weber and the team at LunaMetrics, this book offers foundational knowledge, a collection of practical Google Tag Manager recipes, well-tested best practices, and troubleshooting tips to get your implementation in tip-top condition. It covers topics including: • Google Analytics implementation via Google Tag Manager • How to customize Google Analytics for your unique situation • Using Google Tag Manager to track and analyze interactions across multiple devices and touch points • How to extract data from Google Analytics and use Google BigQuery to analyze Big Data questions What You'll Learn Implementation approaches for Google Analytics, including common pitfalls and troubleshooting strategies. How to use tools like Google Tag Manager and jQuery to jumpstart your Google Analytics implementation. How to track metrics beyond page views to other critical user interactions, such as clicks on outbound links or downloads, scrolling and page engagement, usage of AJAX forms, and much more. How to incorporate additional, customized data into Google Analytics to track individual users or enrich data about their behavior. Who This Book Is For Web developers, data analysts, and marketers with a basic familiarity with Google Analytics from an end-user perspective, as well as some knowledge of HTML and JavaScript.

Cloud Analytics with Google Cloud Platform

Author: Sanket Thodge
Publisher: Packt Publishing Ltd
ISBN: 9781788838597
Release Date: 2018-04-10
Genre: Computers

Combine the power of analytics and cloud computing for faster and efficient insights Key Features Master the concept of analytics on the cloud: and how organizations are using it Learn the design considerations and while applying a cloud analytics solution Design an end-to-end analytics pipeline on the cloud Book Description With the ongoing data explosion, more and more organizations all over the world are slowly migrating their infrastructure to the cloud. These cloud platforms also provide their distinct analytics services to help you get faster insights from your data. This book will give you an introduction to the concept of analytics on the cloud, and the different cloud services popularly used for processing and analyzing data. If you’re planning to adopt the cloud analytics model for your business, this book will help you understand the design and business considerations to be kept in mind, and choose the best tools and alternatives for analytics, based on your requirements. The chapters in this book will take you through the 70+ services available in Google Cloud Platform and their implementation for practical purposes. From ingestion to processing your data, this book contains best practices on building an end-to-end analytics pipeline on the cloud by leveraging popular concepts such as machine learning and deep learning. By the end of this book, you will have a better understanding of cloud analytics as a concept as well as a practical know-how of its implementation What you will learn Explore the basics of cloud analytics and the major cloud solutions Learn how organizations are using cloud analytics to improve the ROI Explore the design considerations while adopting cloud services Work with the ingestion and storage tools of GCP such as Cloud Pub/Sub Process your data with tools such as Cloud Dataproc, BigQuery, etc Over 70 GCP tools to build an analytics engine for cloud analytics Implement machine learning and other AI techniques on GCP Who this book is for This book is targeted at CIOs, CTOs, and even analytics professionals looking for various alternatives to implement their analytics pipeline on the cloud. Data professionals looking to get started with cloud-based analytics will also find this book useful. Some basic exposure to cloud platforms such as GCP will be helpful, but not mandatory.

Google Analytics Breakthrough

Author: Feras Alhlou
Publisher: John Wiley & Sons
ISBN: 9781119231691
Release Date: 2016-08-12
Genre: Business & Economics

A complete, start-to-finish guide to Google Analytics instrumentation and reporting Google Analytics Breakthrough is a much-needed comprehensive resource for the world's most widely adopted analytics tool. Designed to provide a complete, best-practices foundation in measurement strategy, implementation, reporting, and optimization, this book systematically demystifies the broad range of Google Analytics features and configurations. Throughout the end-to-end learning experience, you'll sharpen your core competencies, discover hidden functionality, learn to avoid common pitfalls, and develop next-generation tracking and analysis strategies so you can understand what is helping or hindering your digital performance and begin driving more success. Google Analytics Breakthrough offers practical instruction and expert perspectives on the full range of implementation and reporting skills: Learn how to campaign-tag inbound links to uncover the email, social, PPC, and banner/remarketing traffic hiding as other traffic sources and to confidently measure the ROI of each marketing channel Add event tracking to capture the many important user interactions that Google Analytics does not record by default, such as video plays, PDF downloads, scrolling, and AJAX updates Master Google Tag Manager for greater flexibility and process control in implementation Set up goals and Enhanced Ecommerce tracking to measure performance against organizational KPIs and configure conversion funnels to isolate drop-off Create audience segments that map to your audience constituencies, amplify trends, and help identify optimization opportunities Populate custom dimensions that reflect your organization, your content, and your visitors so Google Analytics can speak your language Gain a more complete view of customer behavior with mobile app and cross-device tracking Incorporate related tools and techniques: third-party data visualization, CRM integration for long-term value and lead qualification, marketing automation, phone conversion tracking, usability, and A/B testing Improve data storytelling and foster analytics adoption in the enterprise Millions of organizations have installed Google Analytics, including an estimated 67 percent of Fortune 500 companies, but deficiencies plague most implementations, and inadequate reporting practices continue to hinder meaningful analysis. By following the strategies and techniques in Google Analytics Breakthrough, you can address the gaps in your own still set, transcend the common limitations, and begin using Google Analytics for real competitive advantage. Critical contributions from industry luminaries such as Brian Clifton, Tim Ash, Bryan and Jeffrey Eisenberg, and Jim Sterne – and a foreword by Avinash Kaushik – enhance the learning experience and empower you to drive consistent, real-world improvement through analytics.

Data Just Right

Author: Michael Manoochehri
Publisher: Pearson Education
ISBN: 9780321898654
Release Date: 2013
Genre: Computers

Presents an introduction to data analytics, describing the management of multi-tetrabyte datasets, such query tools as Hadoop, Hive, and Google BigQuery, the use of R to perform statistical analysis, and advanced data visualization tools.

Digital Exhaust

Author: Dale Neef
Publisher: Pearson Education
ISBN: 9780133838343
Release Date: 2014-11-05
Genre: Business & Economics

Will "Big Data" supercharge the economy, tyrannize us, or both? Data Exhaust is the definitive primer for everyone who wants to understand all the implications of Big Data, digitally driven innovation, and the accelerating Internet Economy. Renowned digital expert Dale Neef clearly explains: What Big Data really is, and what's new and different about it How Big Data works, and what you need to know about Big Data technologies Where the data is coming from: how Big Data integrates sources ranging from social media to machine sensors, smartphones to financial transactions How companies use Big Data analytics to gain a more nuanced, accurate picture of their customers, their own performance, and the newest trends How governments and individual citizens can also benefit from Big Data How to overcome obstacles to success with Big Data – including poor data that can magnify human error A realistic assessment of Big Data threats to employment and personal privacy, now and in the future Neef places the Big Data phenomenon where it belongs: in the context of the broader global shift to the Internet economy, with all that implies. By doing so, he helps businesses plan Big Data strategy more effectively – and helps citizens and policymakers identify sensible policies for preventing its misuse. By conservative estimate, the global Big Data market will soar past $50 billion by 2018. But those direct expenses represent just the "tip of the iceberg" when it comes to Big Data's impact. Big Data is now of acute strategic interest for every organization that aims to succeed – and it is equally important to everyone else. Whoever you are, Data Exhaust tells you exactly what you need to know about Big Data – and what to do about it, too.

Building Big Data and Analytics Solutions in the Cloud

Author: Wei-Dong Zhu
Publisher: IBM Redbooks
ISBN: 9780738453996
Release Date: 2014-12-08
Genre: Computers

Big data is currently one of the most critical emerging technologies. Organizations around the world are looking to exploit the explosive growth of data to unlock previously hidden insights in the hope of creating new revenue streams, gaining operational efficiencies, and obtaining greater understanding of customer needs. It is important to think of big data and analytics together. Big data is the term used to describe the recent explosion of different types of data from disparate sources. Analytics is about examining data to derive interesting and relevant trends and patterns, which can be used to inform decisions, optimize processes, and even drive new business models. With today's deluge of data comes the problems of processing that data, obtaining the correct skills to manage and analyze that data, and establishing rules to govern the data's use and distribution. The big data technology stack is ever growing and sometimes confusing, even more so when we add the complexities of setting up big data environments with large up-front investments. Cloud computing seems to be a perfect vehicle for hosting big data workloads. However, working on big data in the cloud brings its own challenge of reconciling two contradictory design principles. Cloud computing is based on the concepts of consolidation and resource pooling, but big data systems (such as Hadoop) are built on the shared nothing principle, where each node is independent and self-sufficient. A solution architecture that can allow these mutually exclusive principles to coexist is required to truly exploit the elasticity and ease-of-use of cloud computing for big data environments. This IBM® RedpaperTM publication is aimed at chief architects, line-of-business executives, and CIOs to provide an understanding of the cloud-related challenges they face and give prescriptive guidance for how to realize the benefits of big data solutions quickly and cost-effectively.

Big Data Application Architecture Q A

Author: Nitin Sawant
Publisher: Apress
ISBN: 9781430262930
Release Date: 2014-01-24
Genre: Computers

Big Data Application Architecture Pattern Recipes provides an insight into heterogeneous infrastructures, databases, and visualization and analytics tools used for realizing the architectures of big data solutions. Its problem-solution approach helps in selecting the right architecture to solve the problem at hand. In the process of reading through these problems, you will learn harness the power of new big data opportunities which various enterprises use to attain real-time profits. Big Data Application Architecture Pattern Recipes answers one of the most critical questions of this time 'how do you select the best end-to-end architecture to solve your big data problem?'. The book deals with various mission critical problems encountered by solution architects, consultants, and software architects while dealing with the myriad options available for implementing a typical solution, trying to extract insight from huge volumes of data in real–time and across multiple relational and non-relational data types for clients from industries like retail, telecommunication, banking, and insurance. The patterns in this book provide the strong architectural foundation required to launch your next big data application. The architectures for realizing these opportunities are based on relatively less expensive and heterogeneous infrastructures compared to the traditional monolithic and hugely expensive options that exist currently. This book describes and evaluates the benefits of heterogeneity which brings with it multiple options of solving the same problem, evaluation of trade-offs and validation of 'fitness-for-purpose' of the solution.

Big Data Science Analytics

Author: Arshdeep Bahga
Publisher: Vpt
ISBN: 0996025545
Release Date: 2016-04-15
Genre: Computers

Big data is defined as collections of datasets whose volume, velocity or variety is so large that it is difficult to store, manage, process and analyze the data using traditional databases and data processing tools. We have written this textbook to meet this need at colleges and universities, and also for big data service providers.

Data Science on the Google Cloud Platform

Author: Valliappa Lakshmanan
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491974513
Release Date: 2017-12-12
Genre: Computers

Learn how easy it is to apply sophisticated statistical and machine learning methods to real-world problems when you build on top of the Google Cloud Platform (GCP). This hands-on guide shows developers entering the data science field how to implement an end-to-end data pipeline, using statistical and machine learning methods and tools on GCP. Through the course of the book, you’ll work through a sample business decision by employing a variety of data science approaches. Follow along by implementing these statistical and machine learning solutions in your own project on GCP, and discover how this platform provides a transformative and more collaborative way of doing data science. You’ll learn how to: Automate and schedule data ingest, using an App Engine application Create and populate a dashboard in Google Data Studio Build a real-time analysis pipeline to carry out streaming analytics Conduct interactive data exploration with Google BigQuery Create a Bayesian model on a Cloud Dataproc cluster Build a logistic regression machine-learning model with Spark Compute time-aggregate features with a Cloud Dataflow pipeline Create a high-performing prediction model with TensorFlow Use your deployed model as a microservice you can access from both batch and real-time pipelines

Hands On Machine Learning on Google Cloud Platform

Author: Giuseppe Ciaburro
Publisher: Packt Publishing Ltd
ISBN: 9781788398879
Release Date: 2018-04-30
Genre: Computers

Unleash Google's Cloud Platform to build, train and optimize machine learning models Key Features Get well versed in GCP pre-existing services to build your own smart models A comprehensive guide covering aspects from data processing, analyzing to building and training ML models A practical approach to produce your trained ML models and port them to your mobile for easy access Book Description Google Cloud Machine Learning Engine combines the services of Google Cloud Platform with the power and flexibility of TensorFlow. With this book, you will not only learn to build and train different complexities of machine learning models at scale but also host them in the cloud to make predictions. This book is focused on making the most of the Google Machine Learning Platform for large datasets and complex problems. You will learn from scratch how to create powerful machine learning based applications for a wide variety of problems by leveraging different data services from the Google Cloud Platform. Applications include NLP, Speech to text, Reinforcement learning, Time series, recommender systems, image classification, video content inference and many other. We will implement a wide variety of deep learning use cases and also make extensive use of data related services comprising the Google Cloud Platform ecosystem such as Firebase, Storage APIs, Datalab and so forth. This will enable you to integrate Machine Learning and data processing features into your web and mobile applications. By the end of this book, you will know the main difficulties that you may encounter and get appropriate strategies to overcome these difficulties and build efficient systems. What you will learn Use Google Cloud Platform to build data-based applications for dashboards, web, and mobile Create, train and optimize deep learning models for various data science problems on big data Learn how to leverage BigQuery to explore big datasets Use Google’s pre-trained TensorFlow models for NLP, image, video and much more Create models and architectures for Time series, Reinforcement Learning, and generative models Create, evaluate, and optimize TensorFlow and Keras models for a wide range of applications Who this book is for This book is for data scientists, machine learning developers and AI developers who want to learn Google Cloud Platform services to build machine learning applications. Since the interaction with the Google ML platform is mostly done via the command line, the reader is supposed to have some familiarity with the bash shell and Python scripting. Some understanding of machine learning and data science concepts will be handy

Google Analytics e Google Tag Manager para Desenvolvedores

Author: Jonathan Weber
Publisher: Novatec Editora
ISBN: 9788575225028
Release Date: 2016-05-05
Genre: Business & Economics

Quer você seja um profissional de marketing com habilidades de desenvolvimento ou um analista/desenvolvedor web pleno, este livro mostra como implementar o Google Analytics usando o Google Tag Manager para alavancar seu trabalho de web analytics. Quer você esteja começando do zero em um novo site, quer esteja fazendo a reengenharia ou aprimorando uma conta do Google Analytics que você herdou, este livro fornece as ferramentas de que você precisa. Há uma razão para tantas organizações usarem o Google Analytics. A coleta efetiva de dados de web analytics por meio do Google Analytics pode reduzir os custos de aquisição de clientes, converter visitantes em clientes, fornecer feedback valioso sobre novas iniciativas de produtos e oferecer ideias que vão fazer crescer sua base de clientes. Então, como o Google Tag Manager se enquadra nisso? Com uma lista crescente de recursos e a rápida adoção em todos os setores, o Google Tag Manager permite a colaboração sem precedentes entre marketing e equipes técnicas, atualizações relâmpago de seu site e a padronização das tags mais comuns para os esforços internos da empresa em rastreamento e marketing. Este livro mostra que, para conseguir os dados ricos que você está realmente buscando a fim de melhor atender às necessidades dos seus usuários, você precisa das ferramentas que o Google Tag Manager fornece para uma implementação profissional de um sistema de medição do Google Analytics em seu site. Escrito pelo “evangelista de dados” e especialista em Google Analytics Jonathan Weber e a equipe da LunaMetrics, este livro oferece conhecimento fundamental, uma coleção de receitas práticas do Google Tag Manager, as melhores práticas comprovadas e dicas de solução de problemas para colocar sua implementação em excelentes condições. Este livro aborda, entre outros assuntos: • Como implementar o Google Analytics via Google Tag Manager • Como personalizar o Google Analytics para sua situação específica • Como usar o Google Tag Manager para rastrear e analisar as interações em vários dispositivos e pontos de contato • Como extrair dados do Google Analytics e usar o Google BigQuery para analisar questões de grandes volumes de dados (Big Data)

Pro Spark Streaming

Author: Zubair Nabi
Publisher: Apress
ISBN: 9781484214794
Release Date: 2016-06-13
Genre: Computers

Learn the right cutting-edge skills and knowledge to leverage Spark Streaming to implement a wide array of real-time, streaming applications. This book walks you through end-to-end real-time application development using real-world applications, data, and code. Taking an application-first approach, each chapter introduces use cases from a specific industry and uses publicly available datasets from that domain to unravel the intricacies of production-grade design and implementation. The domains covered in Pro Spark Streaming include social media, the sharing economy, finance, online advertising, telecommunication, and IoT. In the last few years, Spark has become synonymous with big data processing. DStreams enhance the underlying Spark processing engine to support streaming analysis with a novel micro-batch processing model. Pro Spark Streaming by Zubair Nabi will enable you to become a specialist of latency sensitive applications by leveraging the key features of DStreams, micro-batch processing, and functional programming. To this end, the book includes ready-to-deploy examples and actual code. Pro Spark Streaming will act as the bible of Spark Streaming. What You'll Learn Discover Spark Streaming application development and best practices Work with the low-level details of discretized streams Optimize production-grade deployments of Spark Streaming via configuration recipes and instrumentation using Graphite, collectd, and Nagios Ingest data from disparate sources including MQTT, Flume, Kafka, Twitter, and a custom HTTP receiver Integrate and couple with HBase, Cassandra, and Redis Take advantage of design patterns for side-effects and maintaining state across the Spark Streaming micro-batch model Implement real-time and scalable ETL using data frames, SparkSQL, Hive, and SparkR Use streaming machine learning, predictive analytics, and recommendations Mesh batch processing with stream processing via the Lambda architecture Who This Book Is For Data scientists, big data experts, BI analysts, and data architects.