Author: Bill Jackson

Publisher:

ISBN: 0718712005

Release Date: 1994-01-01

Genre: Graph theory

Skip to content
## Graph Theory

## Graph Theory

The Cambridge Graph Theory Conference, held at Trinity College from 11 to 13 March 1981, brought together top ranking workers from diverse areas of the subject. The papers presented were by invitation only. This volume contains most of the contniutions, suitably refereed and revised. For many years now, graph theory has been developing at a great pace and in many directions. In order to emphasize the variety of questions and to preserve the freshness of research, the theme of the meeting was not restricted. Consequently, the papers in this volume deal with many aspects of graph theory, including colouring, connectivity, cycles, Ramsey theory, random graphs, flows, simplicial decompositions and directed graphs. A number of other papers are concerned with related areas, including hypergraphs, designs, algorithms, games and social models. This wealth of topics should enhance the attractiveness of the volume.
## Graph Theory with Applications

## Modern Graph Theory

An in-depth account of graph theory, written for serious students of mathematics and computer science. It reflects the current state of the subject and emphasises connections with other branches of pure mathematics. Recognising that graph theory is one of several courses competing for the attention of a student, the book contains extensive descriptive passages designed to convey the flavour of the subject and to arouse interest. In addition to a modern treatment of the classical areas of graph theory, the book presents a detailed account of newer topics, including Szemerédis Regularity Lemma and its use, Shelahs extension of the Hales-Jewett Theorem, the precise nature of the phase transition in a random graph process, the connection between electrical networks and random walks on graphs, and the Tutte polynomial and its cousins in knot theory. Moreover, the book contains over 600 well thought-out exercises: although some are straightforward, most are substantial, and some will stretch even the most able reader.
## Algebraic Graph Theory

This book presents and illustrates the main tools and ideas of algebraic graph theory, with a primary emphasis on current rather than classical topics. It is designed to offer self-contained treatment of the topic, with strong emphasis on concrete examples.
## Combinatorics with Emphasis on the Theory of Graphs

Combinatorics and graph theory have mushroomed in recent years. Many overlapping or equivalent results have been produced. Some of these are special cases of unformulated or unrecognized general theorems. The body of knowledge has now reached a stage where approaches toward unification are overdue. To paraphrase Professor Gian-Carlo Rota (Toronto, 1967), "Combinatorics needs fewer theorems and more theory. " In this book we are doing two things at the same time: A. We are presenting a unified treatment of much of combinatorics and graph theory. We have constructed a concise algebraically based, but otherwise self-contained theory, which at one time embraces the basic theorems that one normally wishes to prove while giving a common terminology and framework for the develop ment of further more specialized results. B. We are writing a textbook whereby a student of mathematics or a mathematician with another specialty can learn combinatorics and graph theory. We want this learning to be done in a much more unified way than has generally been possible from the existing literature. Our most difficult problem in the course of writing this book has been to keep A and B in balance. On the one hand, this book would be useless as a textbook if certain intuitively appealing, classical combinatorial results were either overlooked or were treated only at a level of abstraction rendering them beyond all recognition.
## Combinatorics and Graph Theory

This book evolved from several courses in combinatorics and graph theory given at Appalachian State University and UCLA. Chapter 1 focuses on finite graph theory, including trees, planarity, coloring, matchings, and Ramsey theory. Chapter 2 studies combinatorics, including the principle of inclusion and exclusion, generating functions, recurrence relations, Pólya theory, the stable marriage problem, and several important classes of numbers. Chapter 3 presents infinite pigeonhole principles, König's lemma, and Ramsey's theorem, and discusses their connections to axiomatic set theory. The text is written in an enthusiastic and lively style. It includes results and problems that cross subdisciplines, emphasizing relationships between different areas of mathematics. In addition, recent results appear in the text, illustrating the fact that mathematics is a living discipline. The text is primarily directed toward upper-division undergraduate students, but lower-division undergraduates with a penchant for proof and graduate students seeking an introduction to these subjects will also find much of interest.
## Matroid Theory

This volume contains the proceedings of the 1995 AMS-IMS-SIAM Joint Summer Research Conference on Matroid Theory held at the University of Washington, Seattle. The book features three comprehensive surveys that bring the reader to the forefront of research in matroid theory. Joseph Kung's encyclopedic treatment of the critical problem traces the development of this problem from its origins through its numerous links with other branches of mathematics to the current status of its many aspects. James Oxley's survey of the role of connectivity and structure theorems in matroid theory stresses the influence of the Wheels and Whirls Theorem of Tutte and the Splitter Theorem of Seymour. Walter Whiteley's article unifies applications of matroid theory to constrained geometrical systems, including the rigidity of bar-and-joint frameworks, parallel drawings, and splines. These widely accessible articles contain many new results and directions for further research and applications. The surveys are complemented by selected short research papers. The volume concludes with a chapter of open problems. Features self-contained, accessible surveys of three active research areas in matroid theory; many new results; pointers to new research topics; a chapter of open problems; mathematical applications; and applications and connections to other disciplines, such as computer-aided design and electrical and structural engineering.
## Extremal Graph Theory

The ever-expanding field of extremal graph theory encompasses a diverse array of problem-solving methods, including applications to economics, computer science, and optimization theory. This volume, based on a series of lectures delivered to graduate students at the University of Cambridge, presents a concise yet comprehensive treatment of extremal graph theory. Unlike most graph theory treatises, this text features complete proofs for almost all of its results. Further insights into theory are provided by the numerous exercises of varying degrees of difficulty that accompany each chapter. Although geared toward mathematicians and research students, much of Extremal Graph Theory is accessible even to undergraduate students of mathematics. Pure mathematicians will find this text a valuable resource in terms of its unusually large collection of results and proofs, and professionals in other fields with an interest in the applications of graph theory will also appreciate its precision and scope.
## Graph Theory and Its Applications Second Edition

Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.
## Introduction to Graph Theory

Aimed at "the mathematically traumatized," this text offers nontechnical coverage of graph theory, with exercises. Discusses planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. 1976 edition.
## Fractional Graph Theory

This volume explains the general theory of hypergraphs and presents in-depth coverage of fundamental and advanced topics: fractional matching, fractional coloring, fractional edge coloring, fractional arboricity via matroid methods, fractional isomorphism, and more. 1997 edition.
## Algebraic Graph Theory

This is a substantial revision of a much-quoted monograph, first published in 1974. The structure is unchanged, but the text has been clarified and the notation brought into line with current practice. A large number of 'Additional Results' are included at the end of each chapter, thereby covering most of the major advances in the last twenty years. Professor Biggs' basic aim remains to express properties of graphs in algebraic terms, then to deduce theorems about them. In the first part, he tackles the applications of linear algebra and matrix theory to the study of graphs; algebraic constructions such as adjacency matrix and the incidence matrix and their applications are discussed in depth. There follows an extensive account of the theory of chromatic polynomials, a subject which has strong links with the 'interaction models' studied in theoretical physics, and the theory of knots. The last part deals with symmetry and regularity properties. Here there are important connections with other branches of algebraic combinatorics and group theory. This new and enlarged edition this will be essential reading for a wide range of mathematicians, computer scientists and theoretical physicists.
## Graph Theory

This standard textbook of modern graph theory, now in its fifth edition, combines the authority of a classic with the engaging freshness of style that is the hallmark of active mathematics. It covers the core material of the subject with concise yet reliably complete proofs, while offering glimpses of more advanced methods in each field by one or two deeper results, again with proofs given in full detail. The book can be used as a reliable text for an introductory course, as a graduate text, and for self-study. From the reviews: “This outstanding book cannot be substituted with any other book on the present textbook market. It has every chance of becoming the standard textbook for graph theory.” Acta Scientiarum Mathematiciarum “Deep, clear, wonderful. This is a serious book about the heart of graph theory. It has depth and integrity.” Persi Diaconis & Ron Graham, SIAM Review “The book has received a very enthusiastic reception, which it amply deserves. A masterly elucidation of modern graph theory.” Bulletin of the Institute of Combinatorics and its Applications “Succeeds dramatically ... a hell of a good book.” MAA Reviews “A highlight of the book is what is by far the best account in print of the Seymour-Robertson theory of graph minors.” Mathematika “ ... like listening to someone explain mathematics.” Bulletin of the AMS
## Matrix Analysis

This book presents a substantial part of matrix analysis that is functional analytic in spirit. Topics covered include the theory of majorization, variational principles for eigenvalues, operator monotone and convex functions, and perturbation of matrix functions and matrix inequalities. The book offers several powerful methods and techniques of wide applicability, and it discusses connections with other areas of mathematics.