Grokking Algorithms

Author: Aditya Y. Bhargava
Publisher: Manning Publications
ISBN: 1617292230
Release Date: 2016-05-25
Genre: Computers

Summary Grokking Algorithms is a fully illustrated, friendly guide that teaches you how to apply common algorithms to the practical problems you face every day as a programmer. You'll start with sorting and searching and, as you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. Learning about algorithms doesn't have to be boring! Get a sneak peek at the fun, illustrated, and friendly examples you'll find in Grokking Algorithms on Manning Publications' YouTube channel. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology An algorithm is nothing more than a step-by-step procedure for solving a problem. The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to understand them but refuse to slog through dense multipage proofs, this is the book for you. This fully illustrated and engaging guide makes it easy to learn how to use the most important algorithms effectively in your own programs. About the Book Grokking Algorithms is a friendly take on this core computer science topic. In it, you'll learn how to apply common algorithms to the practical programming problems you face every day. You'll start with tasks like sorting and searching. As you build up your skills, you'll tackle more complex problems like data compression and artificial intelligence. Each carefully presented example includes helpful diagrams and fully annotated code samples in Python. By the end of this book, you will have mastered widely applicable algorithms as well as how and when to use them. What's Inside Covers search, sort, and graph algorithms Over 400 pictures with detailed walkthroughs Performance trade-offs between algorithms Python-based code samples About the Reader This easy-to-read, picture-heavy introduction is suitable for self-taught programmers, engineers, or anyone who wants to brush up on algorithms. About the Author Aditya Bhargava is a Software Engineer with a dual background in Computer Science and Fine Arts. He blogs on programming at Table of Contents Introduction to algorithms Selection sort Recursion Quicksort Hash tables Breadth-first search Dijkstra's algorithm Greedy algorithms Dynamic programming K-nearest neighbors

Grokking Deep Learning

Author: Andrew Trask
Publisher: Manning Publications
ISBN: 1617293709
Release Date: 2017-03-31
Genre: Computers

Artificial Intelligence is the most exciting technology of the century, and Deep Learning is, quite literally, the "brain" behind the world's smartest Artificial Intelligence systems out there. Grokking Deep Learning is the perfect place to begin the deep learning journey. Rather than just learning the "black box" API of some library or framework, readers will actually understand how to build these algorithms completely from scratch. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Grokking Bitcoin

Author: Kalle Rosenbaum
ISBN: 1617294640
Release Date: 2018-07-31
Genre: Computers

The modern world turns on universally-accepted ideas of currency and ownership. Bitcoin, and its underlying technology, offer the potential to move control of these key institutions from change-prone governments to a secure storage system that independently records value and ownership in a distributed public ledger called "the blockchain. Grokking Bitcoin opens up this powerful distributed ledger system, exploring the technology that enables applications both for Bitcoin-based financial transactions and using the blockchain for registering physical property ownership. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

Algorithms of the Intelligent Web

Author: Douglas G McIlwraith
Publisher: Manning Publications
ISBN: 1617292583
Release Date: 2016-09-08
Genre: Computers

Summary Algorithms of the Intelligent Web, Second Edition teaches the most important approaches to algorithmic web data analysis, enabling you to create your own machine learning applications that crunch, munge, and wrangle data collected from users, web applications, sensors and website logs. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Valuable insights are buried in the tracks web users leave as they navigate pages and applications. You can uncover them by using intelligent algorithms like the ones that have earned Facebook, Google, and Twitter a place among the giants of web data pattern extraction. About the Book Algorithms of the Intelligent Web, Second Edition teaches you how to create machine learning applications that crunch and wrangle data collected from users, web applications, and website logs. In this totally revised edition, you'll look at intelligent algorithms that extract real value from data. Key machine learning concepts are explained with code examples in Python's scikit-learn. This book guides you through algorithms to capture, store, and structure data streams coming from the web. You'll explore recommendation engines and dive into classification via statistical algorithms, neural networks, and deep learning. What's Inside Introduction to machine learning Extracting structure from data Deep learning and neural networks How recommendation engines work About the Reader Knowledge of Python is assumed. About the Authors Douglas McIlwraith is a machine learning expert and data science practitioner in the field of online advertising. Dr. Haralambos Marmanis is a pioneer in the adoption of machine learning techniques for industrial solutions. Dmitry Babenko designs applications for banking, insurance, and supply-chain management. Foreword by Yike Guo. Table of Contents Building applications for the intelligent web Extracting structure from data: clustering and transforming your data Recommending relevant content Classification: placing things where they belong Case study: click prediction for online advertising Deep learning and neural networks Making the right choice The future of the intelligent web Appendix - Capturing data on the web

Grokking Reactivex

Author: Morgillo
Publisher: Manning Publications
ISBN: 1617293490
Release Date: 2017-03-03
Genre: Computers

ReactiveX is the common tongue of the reactive programming world. It's a new programming paradigm applied to infinite scenarios using any popular programming language. To really understand Rx, you need to rewire your brain to see the world differently, and we're here to help you. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. Grokking ReactiveX is a practical book that teaches readers how to solve complex problems elegantly and with few lines of code. To make learning easier, each chapter introduces a new concept and then immediately demonstrates how to use it. Following carefully-selected examples with thorough, well-paced explanations, readers will immerse themselves in ReactiveX, concept by concept.

Algorithms Unlocked

Author: Thomas H. Cormen
Publisher: MIT Press
ISBN: 9780262313230
Release Date: 2013-03-01
Genre: Computers

Have you ever wondered how your GPS can find the fastest way to your destination, selecting one route from seemingly countless possibilities in mere seconds? How your credit card account number is protected when you make a purchase over the Internet? The answer is algorithms. And how do these mathematical formulations translate themselves into your GPS, your laptop, or your smart phone? This book offers an engagingly written guide to the basics of computer algorithms. In Algorithms Unlocked, Thomas Cormen -- coauthor of the leading college textbook on the subject -- provides a general explanation, with limited mathematics, of how algorithms enable computers to solve problems. Readers will learn what computer algorithms are, how to describe them, and how to evaluate them. They will discover simple ways to search for information in a computer; methods for rearranging information in a computer into a prescribed order ("sorting"); how to solve basic problems that can be modeled in a computer with a mathematical structure called a "graph" (useful for modeling road networks, dependencies among tasks, and financial relationships); how to solve problems that ask questions about strings of characters such as DNA structures; the basic principles behind cryptography; fundamentals of data compression; and even that there are some problems that no one has figured out how to solve on a computer in a reasonable amount of time.

Data Structures and Algorithms in Python

Author: Michael T. Goodrich
Publisher: Wiley Global Education
ISBN: 9781118476734
Release Date: 2013-03-08
Genre: Computers

Based on the authors’ market leading data structures books in Java and C++, this textbook offers a comprehensive, definitive introduction to data structures in Python by authoritative authors. Data Structures and Algorithms in Python is the first authoritative object-oriented book available for the Python data structures course. Designed to provide a comprehensive introduction to data structures and algorithms, including their design, analysis, and implementation, the text will maintain the same general structure as Data Structures and Algorithms in Java and Data Structures and Algorithms in C++.

Algorithms For Dummies

Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 9781119330523
Release Date: 2017-04-11
Genre: Computers

Discover how algorithms shape and impact our digital world All data, big or small, starts with algorithms. Algorithms are mathematical equations that determine what we see—based on our likes, dislikes, queries, views, interests, relationships, and more—online. They are, in a sense, the electronic gatekeepers to our digital, as well as our physical, world. This book demystifies the subject of algorithms so you can understand how important they are business and scientific decision making. Algorithms for Dummies is a clear and concise primer for everyday people who are interested in algorithms and how they impact our digital lives. Based on the fact that we already live in a world where algorithms are behind most of the technology we use, this book offers eye-opening information on the pervasiveness and importance of this mathematical science—how it plays out in our everyday digestion of news and entertainment, as well as in its influence on our social interactions and consumerism. Readers even learn how to program an algorithm using Python! Become well-versed in the major areas comprising algorithms Examine the incredible history behind algorithms Get familiar with real-world applications of problem-solving procedures Experience hands-on development of an algorithm from start to finish with Python If you have a nagging curiosity about why an ad for that hammock you checked out on Amazon is appearing on your Facebook page, you'll find Algorithm for Dummies to be an enlightening introduction to this integral realm of math, science, and business.

Deep Learning

Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 9780262337373
Release Date: 2016-11-10
Genre: Computers

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Once Upon an Algorithm

Author: Martin Erwig
Publisher: MIT Press
ISBN: 9780262341707
Release Date: 2017-08-11
Genre: Mathematics

Picture a computer scientist, staring at a screen and clicking away frantically on a keyboard, hacking into a system, or perhaps developing an app. Now delete that picture. In Once Upon an Algorithm, Martin Erwig explains computation as something that takes place beyond electronic computers, and computer science as the study of systematic problem solving. Erwig points out that many daily activities involve problem solving. Getting up in the morning, for example: You get up, take a shower, get dressed, eat breakfast. This simple daily routine solves a recurring problem through a series of well-defined steps. In computer science, such a routine is called an algorithm. Erwig illustrates a series of concepts in computing with examples from daily life and familiar stories. Hansel and Gretel, for example, execute an algorithm to get home from the forest. The movie Groundhog Day illustrates the problem of unsolvability; Sherlock Holmes manipulates data structures when solving a crime; the magic in Harry Potter's world is understood through types and abstraction; and Indiana Jones demonstrates the complexity of searching. Along the way, Erwig also discusses representations and different ways to organize data; "intractable" problems; language, syntax, and ambiguity; control structures, loops, and the halting problem; different forms of recursion; and rules for finding errors in algorithms. This engaging book explains computation accessibly and shows its relevance to daily life. Something to think about next time we execute the algorithm of getting up in the morning.

Computer Science Distilled

Author: Wladston Ferreira Filho
ISBN: 0997316020
Release Date: 2017-01-17
Genre: Computer algorithms

A foolproof walkthrough of must-know computer science concepts. A fast guide for those who don't need the academic formality, it goes straight to what differentiates pros from amateurs. First introducing discrete mathematics, then exposing the most common algorithm and data structure design elements, and finally the working principles of computers and programming languages, the book is indicated to all programmers.

Algorithms in a Nutshell

Author: George T. Heineman
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491912997
Release Date: 2016-03-22
Genre: Computers

Creating robust software requires the use of efficient algorithms, but programmers seldom think about them until a problem occurs. This updated edition of Algorithms in a Nutshell describes a large number of existing algorithms for solving a variety of problems, and helps you select and implement the right algorithm for your needs—with just enough math to let you understand and analyze algorithm performance. With its focus on application, rather than theory, this book provides efficient code solutions in several programming languages that you can easily adapt to a specific project. Each major algorithm is presented in the style of a design pattern that includes information to help you understand why and when the algorithm is appropriate. With this book, you will: Solve a particular coding problem or improve on the performance of an existing solution Quickly locate algorithms that relate to the problems you want to solve, and determine why a particular algorithm is the right one to use Get algorithmic solutions in C, C++, Java, and Ruby with implementation tips Learn the expected performance of an algorithm, and the conditions it needs to perform at its best Discover the impact that similar design decisions have on different algorithms Learn advanced data structures to improve the efficiency of algorithms

The Quick Python Book

Author: Naomi R. Ceder
Publisher: Pearson Professional
ISBN: 1617294039
Release Date: 2018-03-28
Genre: Computers

Summary This third revision of Manning's popular The Quick Python Book offers a clear, crisp updated introduction to the elegant Python programming language and its famously easy-to-read syntax. Written for programmers new to Python, this latest edition includes new exercises throughout. It covers features common to other languages concisely, while introducing Python's comprehensive standard functions library and unique features in detail. Foreword by Nicholas Tollervey, Python Software Foundation. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Initially Guido van Rossum's 1989 holiday project, Python has grown into an amazing computer language. It's a joy to learn and read, and powerful enough to handle everything from low-level system resources to advanced applications like deep learning. Elegantly simple and complete, it also boasts a massive ecosystem of libraries and frameworks. Python programmers are in high demand/mdash;you can't afford not to be fluent! About the Book The Quick Python Book, Third Edition is a comprehensive guide to the Python language by a Python authority, Naomi Ceder. With the personal touch of a skilled teacher, she beautifully balances details of the language with the insights and advice you need to handle any task. Extensive, relevant examples and learn-by-doing exercises help you master each important concept the first time through. Whether you're scraping websites or playing around with nested tuples, you'll appreciate this book's clarity, focus, and attention to detail. What's Inside Clear coverage of Python 3 Core libraries, packages, and tools In-depth exercises Five new data science-related chapters About the Reader Written for readers familiar with programming concepts--no Python experience assumed. About the Author Naomi Ceder is chair of the Python Software Foundation. She has been learning, using, and teaching Python since 2001. Table of Contents PART 1 - STARTING OUT About Python Getting started The Quick Python overview PART 2 - THE ESSENTIALS The absolute basics Lists, tuples, and sets Strings Dictionaries Control flow Functions Modules and scoping rules Python programs Using the filesystem Reading and writing files Exceptions PART 3 - ADVANCED LANGUAGE FEATURES Classes and object-oriented programming Regular expressions Data types as objects Packages Using Python libraries PART 4 - WORKING WITH DATA Basic file wrangling Processing data files Data over the network Saving data Exploring data

Fundamentals of Deep Learning

Author: Nikhil Buduma
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491925560
Release Date: 2017-05-25
Genre: Computers

With the reinvigoration of neural networks in the 2000s, deep learning has become an extremely active area of research, one that’s paving the way for modern machine learning. In this practical book, author Nikhil Buduma provides examples and clear explanations to guide you through major concepts of this complicated field. Companies such as Google, Microsoft, and Facebook are actively growing in-house deep-learning teams. For the rest of us, however, deep learning is still a pretty complex and difficult subject to grasp. If you’re familiar with Python, and have a background in calculus, along with a basic understanding of machine learning, this book will get you started. Examine the foundations of machine learning and neural networks Learn how to train feed-forward neural networks Use TensorFlow to implement your first neural network Manage problems that arise as you begin to make networks deeper Build neural networks that analyze complex images Perform effective dimensionality reduction using autoencoders Dive deep into sequence analysis to examine language Learn the fundamentals of reinforcement learning

Algorithms to Live By

Author: Brian Christian
Publisher: Macmillan
ISBN: 9781627790369
Release Date: 2016-04-19
Genre: Business & Economics

A fascinating exploration of how insights from computer algorithms can be applied to our everyday lives, helping to solve common decision-making problems and illuminate the workings of the human mind All our lives are constrained by limited space and time, limits that give rise to a particular set of problems. What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us. In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.