Handbook of Data Visualization

Author: Chun-houh Chen
Publisher: Springer Science & Business Media
ISBN: 3540330372
Release Date: 2007-12-18
Genre: Computers

Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools such as mosaic plots, parallel coordinate plots, and linked views. Coverage also examines graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well software for graphics.

Data Visualisation

Author: Andy Kirk
Publisher: SAGE
ISBN: 9781473966314
Release Date: 2016-06-21
Genre: Computers

Voted one of the 'six best books for data geeks' by The Financial Times. Read the review here Lecturers, request your electronic inspection copy Never has it been more essential to work in the world of data. Scholars and students need to be able to analyze, design and curate information into useful tools of communication, insight and understanding. This book is the starting point in learning the process and skills of data visualization, teaching the concepts and skills of how to present data and inspiring effective visual design. Benefits of this book: A flexible step-by-step journey that equips you to achieve great data visualization A curated collection of classic and contemporary examples, giving illustrations of good and bad practice Examples on every page to give creative inspiration Illustrations of good and bad practice show you how to critically evaluate and improve your own work Advice and experience from the best designers in the field Loads of online practical help, checklists, case studies and exercises make this the most comprehensive text available

Visualization Handbook

Author: Charles D. Hansen
Publisher: Elsevier
ISBN: 9780080481647
Release Date: 2011-08-30
Genre: Technology & Engineering

The Visualization Handbook provides an overview of the field of visualization by presenting the basic concepts, providing a snapshot of current visualization software systems, and examining research topics that are advancing the field. This text is intended for a broad audience, including not only the visualization expert seeking advanced methods to solve a particular problem, but also the novice looking for general background information on visualization topics. The largest collection of state-of-the-art visualization research yet gathered in a single volume, this book includes articles by a “who’s who of international scientific visualization researchers covering every aspect of the discipline, including: · Virtual environments for visualization · Basic visualization algorithms · Large-scale data visualization · Scalar data isosurface methods · Visualization software and frameworks · Scalar data volume rendering · Perceptual issues in visualization · Various application topics, including information visualization. * Edited by two of the best known people in the world on the subject; chapter authors are authoritative experts in their own fields; * Covers a wide range of topics, in 47 chapters, representing the state-of-the-art of scientific visualization.

Data Visualization

Author: Andy Kirk
Publisher: Packt Publishing Ltd
ISBN: 9781849693479
Release Date: 2012-01-01
Genre: Computers

A comprehensive yet quick guide to the best approaches to designing data visualizations, with real examples and illustrative diagrams. Whatever the desired outcome ensure success by following this expert design process. This book is for anyone who has responsibility for, or is interested in trying to find innovative and effective ways to visually analyze and communicate data. There is no skill, no knowledge and no role-based pre-requisites or expectations of anyone reading this book.

Data Mining and Data Visualization

Author:
Publisher: Elsevier
ISBN: 0080459404
Release Date: 2005-05-02
Genre: Mathematics

Data Mining and Data Visualization focuses on dealing with large-scale data, a field commonly referred to as data mining. The book is divided into three sections. The first deals with an introduction to statistical aspects of data mining and machine learning and includes applications to text analysis, computer intrusion detection, and hiding of information in digital files. The second section focuses on a variety of statistical methodologies that have proven to be effective in data mining applications. These include clustering, classification, multivariate density estimation, tree-based methods, pattern recognition, outlier detection, genetic algorithms, and dimensionality reduction. The third section focuses on data visualization and covers issues of visualization of high-dimensional data, novel graphical techniques with a focus on human factors, interactive graphics, and data visualization using virtual reality. This book represents a thorough cross section of internationally renowned thinkers who are inventing methods for dealing with a new data paradigm. Distinguished contributors who are international experts in aspects of data mining Includes data mining approaches to non-numerical data mining including text data, Internet traffic data, and geographic data Highly topical discussions reflecting current thinking on contemporary technical issues, e.g. streaming data Discusses taxonomy of dataset sizes, computational complexity, and scalability usually ignored in most discussions Thorough discussion of data visualization issues blending statistical, human factors, and computational insights

Data Visualization

Author: Alexandru C. Telea
Publisher: CRC Press
ISBN: 9781466585263
Release Date: 2014-09-18
Genre: Computers

Designing a complete visualization system involves many subtle decisions. When designing a complex, real-world visualization system, such decisions involve many types of constraints, such as performance, platform (in)dependence, available programming languages and styles, user-interface toolkits, input/output data format constraints, integration with third-party code, and more. Focusing on those techniques and methods with the broadest applicability across fields, the second edition of Data Visualization: Principles and Practice provides a streamlined introduction to various visualization techniques. The book illustrates a wide variety of applications of data visualizations, illustrating the range of problems that can be tackled by such methods, and emphasizes the strong connections between visualization and related disciplines such as imaging and computer graphics. It covers a wide range of sub-topics in data visualization: data representation; visualization of scalar, vector, tensor, and volumetric data; image processing and domain modeling techniques; and information visualization. See What’s New in the Second Edition: Additional visualization algorithms and techniques New examples of combined techniques for diffusion tensor imaging (DTI) visualization, illustrative fiber track rendering, and fiber bundling techniques Additional techniques for point-cloud reconstruction Additional advanced image segmentation algorithms Several important software systems and libraries Algorithmic and software design issues are illustrated throughout by (pseudo)code fragments written in the C++ programming language. Exercises covering the topics discussed in the book, as well as datasets and source code, are also provided as additional online resources.

Python Data Science Handbook

Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491912133
Release Date: 2016-11-21
Genre: Computers

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Building Responsive Data Visualization for the Web

Author: Bill Hinderman
Publisher: John Wiley & Sons
ISBN: 9781119067146
Release Date: 2015-11-02
Genre: Computers

Unchain your data from the desktop with responsive visualizations Building Responsive Data Visualization for the Web is a handbook for any front-end development team needing a framework for integrating responsive web design into the current workflow. Written by a leading industry expert and design lead at Starbase Go, this book provides a wealth of information and practical guidance from the perspective of a real-world designer. You'll walk through the process of building data visualizations responsively as you learn best practices that build upon responsive web design principles, and get the hands-on practice you need with exercises, examples, and source code provided in every chapter. These strategies are designed to be implemented by teams large and small, with varying skill sets, so you can apply these concepts and skills to your project right away. Responsive web design is the practice of building a website to suit base browser capability, then adding features that enhance the experience based on the user's device's capabilities. Applying these ideas to data produces visualizations that always look as if they were designed specifically for the device through which they are viewed. This book shows you how to incorporate these principles into your current practices, with highly practical hands-on training. Examine the hard data surrounding responsive design Master best practices with hands-on exercises Learn data-based document manipulation using D3.js Adapt your current strategies to responsive workflows Data is growing exponentially, and the need to visualize it in any context has become crucial. Traditional visualizations allow important data to become lost when viewed on a small screen, and the web traffic speaks for itself – viewers repeatedly demonstrate their preference for responsive design. If you're ready to create more accessible, take-anywhere visualizations, Building Responsive Data Visualization for the Web is your tailor-made solution.

Visualizing Data

Author: Ben Fry
Publisher: "O'Reilly Media, Inc."
ISBN: 9780596519308
Release Date: 2007-12-18
Genre: Computers

Provides information on the methods of visualizing data on the Web, along with example projects and code.

The Data Journalism Handbook

Author: Jonathan Gray
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449330026
Release Date: 2012-07-12
Genre: Language Arts & Disciplines

When you combine the sheer scale and range of digital information now available with a journalist’s "nose for news" and her ability to tell a compelling story, a new world of possibility opens up. With The Data Journalism Handbook, you’ll explore the potential, limits, and applied uses of this new and fascinating field. This valuable handbook has attracted scores of contributors since the European Journalism Centre and the Open Knowledge Foundation launched the project at MozFest 2011. Through a collection of tips and techniques from leading journalists, professors, software developers, and data analysts, you’ll learn how data can be either the source of data journalism or a tool with which the story is told—or both. Examine the use of data journalism at the BBC, the Chicago Tribune, the Guardian, and other news organizations Explore in-depth case studies on elections, riots, school performance, and corruption Learn how to find data from the Web, through freedom of information laws, and by "crowd sourcing" Extract information from raw data with tips for working with numbers and statistics and using data visualization Deliver data through infographics, news apps, open data platforms, and download links

Data Visualisation with R

Author: Thomas Rahlf
Publisher: Springer
ISBN: 9783319497518
Release Date: 2017-02-18
Genre: Computers

This book introduces readers to the fundamentals of creating presentation graphics using R, based on 100 detailed and complete scripts. It shows how bar and column charts, population pyramids, Lorenz curves, box plots, scatter plots, time series, radial polygons, Gantt charts, heat maps, bump charts, mosaic and balloon charts, and a series of different thematic map types can be created using R’s Base Graphics System. Every example uses real data and includes step-by-step explanations of the figures and their programming. The open source software R is an established standard and a powerful tool for various visualizing applications, integrating nearly all technologies relevant for data visualization. The basic software, enhanced by more than 7000 extension packs currently freely available, is intensively used by organizations including Google, Facebook and the CIA. The book serves as a comprehensive reference guide to a broad variety of applications in various fields. This book is intended for all kinds of R users, ranging from experts, for whom especially the example codes are particularly useful, to beginners, who will find the finished graphics most helpful in learning what R can actually deliver.

Handbook of Computational Statistics

Author: James E. Gentle
Publisher: Springer Science & Business Media
ISBN: 9783642215513
Release Date: 2012-07-06
Genre: Computers

The Handbook of Computational Statistics - Concepts and Methods (second edition) is a revision of the first edition published in 2004, and contains additional comments and updated information on the existing chapters, as well as three new chapters addressing recent work in the field of computational statistics. This new edition is divided into 4 parts in the same way as the first edition. It begins with "How Computational Statistics became the backbone of modern data science" (Ch.1): an overview of the field of Computational Statistics, how it emerged as a separate discipline, and how its own development mirrored that of hardware and software, including a discussion of current active research. The second part (Chs. 2 - 15) presents several topics in the supporting field of statistical computing. Emphasis is placed on the need for fast and accurate numerical algorithms, and some of the basic methodologies for transformation, database handling, high-dimensional data and graphics treatment are discussed. The third part (Chs. 16 - 33) focuses on statistical methodology. Special attention is given to smoothing, iterative procedures, simulation and visualization of multivariate data. Lastly, a set of selected applications (Chs. 34 - 38) like Bioinformatics, Medical Imaging, Finance, Econometrics and Network Intrusion Detection highlight the usefulness of computational statistics in real-world applications.

Handbook of Graph Drawing and Visualization

Author: Roberto Tamassia
Publisher: CRC Press
ISBN: 9781584884125
Release Date: 2013-08-19
Genre: Mathematics

Get an In-Depth Understanding of Graph Drawing Techniques, Algorithms, Software, and Applications The Handbook of Graph Drawing and Visualization provides a broad, up-to-date survey of the field of graph drawing. It covers topological and geometric foundations, algorithms, software systems, and visualization applications in business, education, science, and engineering. Each chapter is self-contained and includes extensive references. The first several chapters of the book deal with fundamental topological and geometric concepts and techniques used in graph drawing, such as planarity testing and embedding, crossings and planarization, symmetric drawings, and proximity drawings. The following chapters present a large collection of algorithms for constructing drawings of graphs, including tree, planar straight-line, planar orthogonal and polyline, spine and radial, circular, rectangular, hierarchical, and three-dimensional drawings as well as labeling algorithms, simultaneous embeddings, and force-directed methods. The book then introduces the GraphML language for representing graphs and their drawings and describes three software systems for constructing drawings of graphs: OGDF, GDToolkit, and PIGALE. The final chapters illustrate the use of graph drawing methods in visualization applications for biological networks, computer security, data analytics, education, computer networks, and social networks. Edited by a pioneer in graph drawing and with contributions from leaders in the graph drawing research community, this handbook shows how graph drawing and visualization can be applied in the physical, life, and social sciences. Whether you are a mathematics researcher, IT practitioner, or software developer, the book will help you understand graph drawing methods and graph visualization systems, use graph drawing techniques in your research, and incorporate graph drawing solutions in your products.

Data Points

Author: Nathan Yau
Publisher: John Wiley & Sons
ISBN: 9781118654934
Release Date: 2013-03-25
Genre: Computers

A fresh look at visualization from the author of Visualize This Whether it's statistical charts, geographic maps, or the snappy graphical statistics you see on your favorite news sites, the art of data graphics or visualization is fast becoming a movement of its own. In Data Points: Visualization That Means Something, author Nathan Yau presents an intriguing complement to his bestseller Visualize This, this time focusing on the graphics side of data analysis. Using examples from art, design, business, statistics, cartography, and online media, he explores both standard-and not so standard-concepts and ideas about illustrating data. Shares intriguing ideas from Nathan Yau, author of Visualize This and creator of flowingdata.com, with over 66,000 subscribers Focuses on visualization, data graphics that help viewers see trends and patterns they might not otherwise see in a table Includes examples from the author's own illustrations, as well as from professionals in statistics, art, design, business, computer science, cartography, and more Examines standard rules across all visualization applications, then explores when and where you can break those rules Create visualizations that register at all levels, with Data Points: Visualization That Means Something.

The Data Science Handbook

Author: Field Cady
Publisher: John Wiley & Sons
ISBN: 9781119092940
Release Date: 2017-02-28
Genre: Mathematics

A comprehensive overview of data science covering the analytics, programming, and business skills necessary to master the discipline Finding a good data scientist has been likened to hunting for a unicorn: the required combination of technical skills is simply very hard to find in one person. In addition, good data science is not just rote application of trainable skill sets; it requires the ability to think flexibly about all these areas and understand the connections between them. This book provides a crash course in data science, combining all the necessary skills into a unified discipline. Unlike many analytics books, computer science and software engineering are given extensive coverage since they play such a central role in the daily work of a data scientist. The author also describes classic machine learning algorithms, from their mathematical foundations to real-world applications. Visualization tools are reviewed, and their central importance in data science is highlighted. Classical statistics is addressed to help readers think critically about the interpretation of data and its common pitfalls. The clear communication of technical results, which is perhaps the most undertrained of data science skills, is given its own chapter, and all topics are explained in the context of solving real-world data problems. The book also features: • Extensive sample code and tutorials using Python™ along with its technical libraries • Core technologies of “Big Data,” including their strengths and limitations and how they can be used to solve real-world problems • Coverage of the practical realities of the tools, keeping theory to a minimum; however, when theory is presented, it is done in an intuitive way to encourage critical thinking and creativity • A wide variety of case studies from industry • Practical advice on the realities of being a data scientist today, including the overall workflow, where time is spent, the types of datasets worked on, and the skill sets needed The Data Science Handbook is an ideal resource for data analysis methodology and big data software tools. The book is appropriate for people who want to practice data science, but lack the required skill sets. This includes software professionals who need to better understand analytics and statisticians who need to understand software. Modern data science is a unified discipline, and it is presented as such. This book is also an appropriate reference for researchers and entry-level graduate students who need to learn real-world analytics and expand their skill set. FIELD CADY is the data scientist at the Allen Institute for Artificial Intelligence, where he develops tools that use machine learning to mine scientific literature. He has also worked at Google and several Big Data startups. He has a BS in physics and math from Stanford University, and an MS in computer science from Carnegie Mellon.