Machine Learning

Author: Stephen Marsland
Publisher: CRC Press
ISBN: 9781498759786
Release Date: 2015-09-15
Genre: Computers

A Proven, Hands-On Approach for Students without a Strong Statistical Foundation Since the best-selling first edition was published, there have been several prominent developments in the field of machine learning, including the increasing work on the statistical interpretations of machine learning algorithms. Unfortunately, computer science students without a strong statistical background often find it hard to get started in this area. Remedying this deficiency, Machine Learning: An Algorithmic Perspective, Second Edition helps students understand the algorithms of machine learning. It puts them on a path toward mastering the relevant mathematics and statistics as well as the necessary programming and experimentation. New to the Second Edition Two new chapters on deep belief networks and Gaussian processes Reorganization of the chapters to make a more natural flow of content Revision of the support vector machine material, including a simple implementation for experiments New material on random forests, the perceptron convergence theorem, accuracy methods, and conjugate gradient optimization for the multi-layer perceptron Additional discussions of the Kalman and particle filters Improved code, including better use of naming conventions in Python Suitable for both an introductory one-semester course and more advanced courses, the text strongly encourages students to practice with the code. Each chapter includes detailed examples along with further reading and problems. All of the code used to create the examples is available on the author’s website.

Using R for Introductory Statistics Second Edition

Author: John Verzani
Publisher: CRC Press
ISBN: 9781466590731
Release Date: 2014-06-26
Genre: Mathematics

The second edition of a bestselling textbook, Using R for Introductory Statistics guides students through the basics of R, helping them overcome the sometimes steep learning curve. The author does this by breaking the material down into small, task-oriented steps. The second edition maintains the features that made the first edition so popular, while updating data, examples, and changes to R in line with the current version. See What’s New in the Second Edition: Increased emphasis on more idiomatic R provides a grounding in the functionality of base R. Discussions of the use of RStudio helps new R users avoid as many pitfalls as possible. Use of knitr package makes code easier to read and therefore easier to reason about. Additional information on computer-intensive approaches motivates the traditional approach. Updated examples and data make the information current and topical. The book has an accompanying package, UsingR, available from CRAN, R’s repository of user-contributed packages. The package contains the data sets mentioned in the text (data(package="UsingR")), answers to selected problems (answers()), a few demonstrations (demo()), the errata (errata()), and sample code from the text. The topics of this text line up closely with traditional teaching progression; however, the book also highlights computer-intensive approaches to motivate the more traditional approach. The authors emphasize realistic data and examples and rely on visualization techniques to gather insight. They introduce statistics and R seamlessly, giving students the tools they need to use R and the information they need to navigate the sometimes complex world of statistical computing.

Data Mining with R

Author: Luis Torgo
Publisher: CRC Press
ISBN: 9781315399096
Release Date: 2016-11-30
Genre: Business & Economics

Data Mining with R: Learning with Case Studies, Second Edition uses practical examples to illustrate the power of R and data mining. Providing an extensive update to the best-selling first edition, this new edition is divided into two parts. The first part will feature introductory material, including a new chapter that provides an introduction to data mining, to complement the already existing introduction to R. The second part includes case studies, and the new edition strongly revises the R code of the case studies making it more up-to-date with recent packages that have emerged in R. The book does not assume any prior knowledge about R. Readers who are new to R and data mining should be able to follow the case studies, and they are designed to be self-contained so the reader can start anywhere in the document. The book is accompanied by a set of freely available R source files that can be obtained at the book’s web site. These files include all the code used in the case studies, and they facilitate the "do-it-yourself" approach followed in the book. Designed for users of data analysis tools, as well as researchers and developers, the book should be useful for anyone interested in entering the "world" of R and data mining. About the Author Luís Torgo is an associate professor in the Department of Computer Science at the University of Porto in Portugal. He teaches Data Mining in R in the NYU Stern School of Business’ MS in Business Analytics program. An active researcher in machine learning and data mining for more than 20 years, Dr. Torgo is also a researcher in the Laboratory of Artificial Intelligence and Data Analysis (LIAAD) of INESC Porto LA.

Text Mining

Author: Ashok N. Srivastava
Publisher: CRC Press
ISBN: 1420059459
Release Date: 2009-06-15
Genre: Computers

The Definitive Resource on Text Mining Theory and Applications from Foremost Researchers in the Field Giving a broad perspective of the field from numerous vantage points, Text Mining: Classification, Clustering, and Applications focuses on statistical methods for text mining and analysis. It examines methods to automatically cluster and classify text documents and applies these methods in a variety of areas, including adaptive information filtering, information distillation, and text search. The book begins with chapters on the classification of documents into predefined categories. It presents state-of-the-art algorithms and their use in practice. The next chapters describe novel methods for clustering documents into groups that are not predefined. These methods seek to automatically determine topical structures that may exist in a document corpus. The book concludes by discussing various text mining applications that have significant implications for future research and industrial use. There is no doubt that text mining will continue to play a critical role in the development of future information systems and advances in research will be instrumental to their success. This book captures the technical depth and immense practical potential of text mining, guiding readers to a sound appreciation of this burgeoning field.

Temporal Data Mining

Author: Theophano Mitsa
Publisher: CRC Press
ISBN: 1420089773
Release Date: 2010-03-10
Genre: Computers

Temporal data mining deals with the harvesting of useful information from temporal data. New initiatives in health care and business organizations have increased the importance of temporal information in data today. From basic data mining concepts to state-of-the-art advances, Temporal Data Mining covers the theory of this subject as well as its application in a variety of fields. It discusses the incorporation of temporality in databases as well as temporal data representation, similarity computation, data classification, clustering, pattern discovery, and prediction. The book also explores the use of temporal data mining in medicine and biomedical informatics, business and industrial applications, web usage mining, and spatiotemporal data mining. Along with various state-of-the-art algorithms, each chapter includes detailed references and short descriptions of relevant algorithms and techniques described in other references. In the appendices, the author explains how data mining fits the overall goal of an organization and how these data can be interpreted for the purpose of characterizing a population. She also provides programs written in the Java language that implement some of the algorithms presented in the first chapter. Check out the author's blog at

A Handbook of Statistical Analyses using R Third Edition

Author: Torsten Hothorn
Publisher: CRC Press
ISBN: 9781482204582
Release Date: 2014-06-25
Genre: Mathematics

Like the best-selling first two editions, A Handbook of Statistical Analyses using R, Third Edition provides an up-to-date guide to data analysis using the R system for statistical computing. The book explains how to conduct a range of statistical analyses, from simple inference to recursive partitioning to cluster analysis. New to the Third Edition Three new chapters on quantile regression, missing values, and Bayesian inference Extra material in the logistic regression chapter that describes a regression model for ordered categorical response variables Additional exercises More detailed explanations of R code New section in each chapter summarizing the results of the analyses Updated version of the HSAUR package (HSAUR3), which includes some slides that can be used in introductory statistics courses Whether you’re a data analyst, scientist, or student, this handbook shows you how to easily use R to effectively evaluate your data. With numerous real-world examples, it emphasizes the practical application and interpretation of results.

Ubiquitous Computing Fundamentals

Author: John Krumm
Publisher: CRC Press
ISBN: 1420093614
Release Date: 2016-04-19
Genre: Mathematics

"...a must-read text that provides a historical lens to see how ubicomp has matured into a multidisciplinary endeavor. It will be an essential reference to researchers and those who want to learn more about this evolving field." -From the Foreword, Professor Gregory D. Abowd, Georgia Institute of Technology First introduced two decades ago, the term ubiquitous computing is now part of the common vernacular. Ubicomp, as it is commonly called, has grown not just quickly but broadly so as to encompass a wealth of concepts and technology that serves any number of purposes across all of human endeavor. While such growth is positive, the newest generation of ubicomp practitioners and researchers, isolated to specific tasks, are in danger of losing their sense of history and the broader perspective that has been so essential to the field’s creativity and brilliance. Under the guidance of John Krumm, an original ubicomp pioneer, Ubiquitous Computing Fundamentals brings together eleven ubiquitous computing trailblazers who each report on his or her area of expertise. Starting with a historical introduction, the book moves on to summarize a number of self-contained topics. Taking a decidedly human perspective, the book includes discussion on how to observe people in their natural environments and evaluate the critical points where ubiquitous computing technologies can improve their lives. Among a range of topics this book examines: How to build an infrastructure that supports ubiquitous computing applications Privacy protection in systems that connect personal devices and personal information Moving from the graphical to the ubiquitous computing user interface Techniques that are revolutionizing the way we determine a person’s location and understand other sensor measurements While we needn’t become expert in every sub-discipline of ubicomp, it is necessary that we appreciate all the perspectives that make up the field and understand how our work can influence and be influenced by those perspectives. This is important, if we are to encourage future generations to be as successfully innovative as the field’s originators.

The Practical Handbook of Genetic Algorithms

Author: Lance D. Chambers
Publisher: CRC Press
ISBN: 9781420035568
Release Date: 2000-12-07
Genre: Mathematics

Rapid developments in the field of genetic algorithms along with the popularity of the first edition precipitated this completely revised, thoroughly updated second edition of The Practical Handbook of Genetic Algorithms. Like its predecessor, this edition helps practitioners stay up to date on recent developments in the field and provides material they can use productively in their own endeavors. For this edition, the editor again recruited authors at the top of their field and from a cross section of academia and industry, theory and practice. Their contributions detail their own research, new applications, experiment results, and recent advances. Among the applications explored are scheduling problems, optimization, multidimensional scaling, constraint handling, and feature selection and classification. The science and art of GA programming and application has come a long way in the five years since publication of the bestselling first edition. But there still is a long way to go before its bounds are reached-we are still just scratching the surface of GA applications and refinements. By introducing intriguing new applications, offering extensive lists of code, and reporting advances both subtle and dramatic, The Practical Handbook of Genetic Algorithms is designed to help readers contribute to scratching that surface a bit deeper.

Speech and Language Processing

Author: Daniel Jurafsky
Publisher: Pearson
ISBN: 9780133252934
Release Date: 2014-12-30
Genre: Computers

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For undergraduate or advanced undergraduate courses in Classical Natural Language Processing, Statistical Natural Language Processing, Speech Recognition, Computational Linguistics, and Human Language Processing. An explosion of Web-based language techniques, merging of distinct fields, availability of phone-based dialogue systems, and much more make this an exciting time in speech and language processing. The first of its kind to thoroughly cover language technology – at all levels and with all modern technologies – this text takes an empirical approach to the subject, based on applying statistical and other machine-learning algorithms to large corporations. The authors cover areas that traditionally are taught in different courses, to describe a unified vision of speech and language processing. Emphasis is on practical applications and scientific evaluation. An accompanying Website contains teaching materials for instructors, with pointers to language processing resources on the Web. The Second Edition offers a significant amount of new and extended material. Supplements: Click on the "Resources" tab to View Downloadable Files: Solutions Power Point Lecture Slides - Chapters 1-5, 8-10, 12-13 and 24 Now Available! For additional resourcse visit the author website:

Automatic Diatom Identification

Author: Hans Du Buf
Publisher: World Scientific
ISBN: 9810248865
Release Date: 2002
Genre: Science

This is the first book to deal with automatic diatom identification. It provides the necessary background information concerning diatom research, useful for both diatomists and non-diatomists. It deals with the development of electronic databases, image preprocessing, automatic contour extraction, the application of existing contour and ornamentation features and the development of new ones, as well as the application of different classifiers (neural networks, decision trees, etc.). These are tested using two image sets: (i) a very difficult set of Sellaphora pupula with 6 demes and 120 images; (ii) a mixed genera set with 37 taxa and approximately 800 images. The results are excellent, and recognition rates well above 90% have been achieved on both sets. The results are compared with identification rates obtained by human experts. One chapter of the book deals with automatic image capture, i.e. microscope slide scanning at different resolutions using a motorized microscope stage, autofocusing, multifocus fusion, and particle screening to select only diatoms and to reject debris. This book is the final scientific report of the European ADIAC project (Automatic Diatom Identification and Classification), and it lists the web-sites with the created public databases and an identification demo.

Clever Algorithms

Author: Jason Brownlee
Publisher: Jason Brownlee
ISBN: 9781446785065
Release Date: 2011-01
Genre: Computers

This book provides a handbook of algorithmic recipes from the fields of Metaheuristics, Biologically Inspired Computation and Computational Intelligence that have been described in a complete, consistent, and centralized manner. These standardized descriptions were carefully designed to be accessible, usable, and understandable. Most of the algorithms described in this book were originally inspired by biological and natural systems, such as the adaptive capabilities of genetic evolution and the acquired immune system, and the foraging behaviors of birds, bees, ants and bacteria. An encyclopedic algorithm reference, this book is intended for research scientists, engineers, students, and interested amateurs. Each algorithm description provides a working code example in the Ruby Programming Language.

An Introduction to the Bootstrap

Author: Bradley Efron
Publisher: CRC Press
ISBN: 0412042312
Release Date: 1994-05-15
Genre: Mathematics

Statistics is a subject of many uses and surprisingly few effective practitioners. The traditional road to statistical knowledge is blocked, for most, by a formidable wall of mathematics. The approach in An Introduction to the Bootstrap avoids that wall. It arms scientists and engineers, as well as statisticians, with the computational techniques they need to analyze and understand complicated data sets.

Affective Information Processing

Author: Jianhua Tao
Publisher: Springer Science & Business Media
ISBN: 9781848003064
Release Date: 2008-12-02
Genre: Computers

Affective information processing assigns computers the human-like capabilities of observation, interpretation and generation of affect features. It is an important topic for harmonious human-computer interaction, by increasing the quality of human-computer communication and improving the intelligence of the computer. Discussing state of art of the research in affective information processing, this book summarises key technologies researched, such as facial expression recognition, face animation, emotional speech synthesis, intelligent agent, and virtual reality. The detailed discussion covers a wide range of topics including hot topics which look to challenge and improve current research work. Written to provide an opportunity for scientists, engineers and graduate students to learn problems, solutions and technologies in the topic area, this book will provide insight and prove a valuable reference tool.

Bioconductor Case Studies

Author: Florian Hahne
Publisher: Springer Science & Business Media
ISBN: 0387772405
Release Date: 2010-06-09
Genre: Science

Bioconductor software has become a standard tool for the analysis and comprehension of data from high-throughput genomics experiments. Its application spans a broad field of technologies used in contemporary molecular biology. In this volume, the authors present a collection of cases to apply Bioconductor tools in the analysis of microarray gene expression data. Topics covered include: (1) import and preprocessing of data from various sources; (2) statistical modeling of differential gene expression; (3) biological metadata; (4) application of graphs and graph rendering; (5) machine learning for clustering and classification problems; (6) gene set enrichment analysis. Each chapter of this book describes an analysis of real data using hands-on example driven approaches. Short exercises help in the learning process and invite more advanced considerations of key topics. The book is a dynamic document. All the code shown can be executed on a local computer, and readers are able to reproduce every computation, figure, and table.

Perception and Machine Intelligence

Author: Malay K. Kundu
Publisher: Springer
ISBN: 9783642273872
Release Date: 2012-01-12
Genre: Computers

This book constitutes the proceedings of the First Indo-Japanese conference on Perception and Machine Intelligence, PerMIn 2012, held in Kolkata, India, in January 2012. The 41 papers, presented together with 1 keynote paper and 3 plenary papers, were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections named perception; human-computer interaction; e-nose and e-tongue; machine intelligence and application; image and video processing; and speech and signal processing.