Hands On Machine Learning with Scikit Learn and TensorFlow

Author: Aurélien Géron
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491962244
Release Date: 2017-03-13
Genre: Computers

Graphics in this book are printed in black and white. Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—scikit-learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use scikit-learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets Apply practical code examples without acquiring excessive machine learning theory or algorithm details

Neuronale Netze selbst programmieren

Author: Tariq Rashid
Publisher: O'Reilly
ISBN: 9783960101031
Release Date: 2017-05-24
Genre: Computers

Neuronale Netze sind Schlüsselelemente des Deep Learning und der Künstlichen Intelligenz, die heute zu Erstaunlichem in der Lage sind. Sie sind Grundlage vieler Anwendungen im Alltag wie beispielsweise Spracherkennung, Gesichtserkennung auf Fotos oder die Umwandlung von Sprache in Text. Dennoch verstehen nur wenige, wie neuronale Netze tatsächlich funktionieren. Dieses Buch nimmt Sie mit auf eine unterhaltsame Reise, die mit ganz einfachen Ideen beginnt und Ihnen Schritt für Schritt zeigt, wie neuronale Netze arbeiten: - Zunächst lernen Sie die mathematischen Konzepte kennen, die den neuronalen Netzen zugrunde liegen. Dafür brauchen Sie keine tieferen Mathematikkenntnisse, denn alle mathematischen Ideen werden behutsam und mit vielen Illustrationen und Beispielen erläutert. Eine Kurzeinführung in die Analysis unterstützt Sie dabei. - Dann geht es in die Praxis: Nach einer Einführung in die populäre und leicht zu lernende Programmiersprache Python bauen Sie allmählich Ihr eigenes neuronales Netz mit Python auf. Sie bringen ihm bei, handgeschriebene Zahlen zu erkennen, bis es eine Performance wie ein professionell entwickeltes Netz erreicht. - Im nächsten Schritt tunen Sie die Leistung Ihres neuronalen Netzes so weit, dass es eine Zahlenerkennung von 98 % erreicht – nur mit einfachen Ideen und simplem Code. Sie testen das Netz mit Ihrer eigenen Handschrift und werfen noch einen Blick in das mysteriöse Innere eines neuronalen Netzes. - Zum Schluss lassen Sie das neuronale Netz auf einem Raspberry Pi Zero laufen. Tariq Rashid erklärt diese schwierige Materie außergewöhnlich klar und verständlich, dadurch werden neuronale Netze für jeden Interessierten zugänglich und praktisch nachvollziehbar.

Einf hrung in TensorFlow

Author: Tom Hope
Publisher: O'Reilly
ISBN: 9783960101819
Release Date: 2018-05-15
Genre: Computers

Deep-Learning-Netze, die mit großen Datenmengen angelernt wurden, lösen komplexe Aufgaben mit erstaunlicher Genauigkeit. TensorFlow ist die führende Open-Source-Bibliothek zum Erstellen und Trainieren neuronaler Deep-Learning-Netze z.B. für die Sprach- und Bilderkennung, die Verarbeitung natürlicher Sprache (NLP) oder die vorhersagende Datenanalyse. Dieses Buch bietet einer breiten technisch orientierten Leserschaft einen praxisnahen Zugang zu den Grundlagen von TensorFlow.Sie erarbeiten zunächst einige einfache Beispielaufgaben mit TensorFlow und tauchen anschließend tiefer in Themen ein wie die Architektur neuronaler Netze, die Visualisierung mit TensorBoard, Abstraktionsbibliotheken für TensorFlow oder Multithread-Pipelines zur Dateneingabe. Wenn Sie dieses Buch durchgearbeitet haben, sind Sie in der Lage, Deep-Learning-Systeme mit TensorFlow zu erstellen und im Produktivbetrieb einzusetzen.

Praxiseinstieg Machine Learning mit Scikit Learn und TensorFlow

Author: Aurélien Géron
Publisher: O'Reilly
ISBN: 9783960101154
Release Date: 2018-01-05
Genre: Computers

Durchbrüche beim Deep Learning haben das maschinelle Lernen in den letzten Jahren eindrucksvoll vorangebracht. Inzwischen können sogar Programmierer, die kaum etwas über diese Technologie wissen, mit einfachen, effizienten Werkzeugen Machine-Learning-Programme implementieren. Dieses praxisorientierte Buch zeigt Ihnen wie. Mit konkreten Beispielen, einem Minimum an Theorie und zwei unmittelbar anwendbaren Python-Frameworks – Scikit-Learn und TensorFlow – verhilft Ihnen der Autor Aurélien Géron zu einem intuitiven Verständnis der Konzepte und Tools für das Entwickeln intelligenter Systeme. Sie lernen eine Vielzahl von Techniken kennen, beginnend mit einfacher linearer Regression bis hin zu neuronalen Netzen. Übungen zu jedem Kapitel helfen Ihnen, das Gelernte in die Praxis umzusetzen. Sie benötigen lediglich etwas Programmiererfahrung, um direkt zu starten. - Entdecken Sie Machine Learning, insbesondere neuronale Netze und das Deep Learning - Verwenden Sie Scikit-Learn, um ein Machine-Learning-Beispielprojekt vom Anfang bis zum Ende nachzuvollziehen - Erkunden Sie verschiedene trainierbare Modelle, darunter Support Vector Machines, Entscheidungsbäume, Random Forests und Ensemble-Methoden - Nutzen Sie die Bibliothek TensorFlow, um neuronale Netze zu erstellen und zu trainieren - Lernen Sie Architekturen neuronaler Netze kennen, darunter Convolutional Nets, Recurrent Nets und Deep Reinforcement Learning - Eignen Sie sich Techniken zum Trainieren und Skalieren von neuronalen Netzen an - Wenden Sie Codebeispiele an, ohne exzessiv die Theorie von Machine Learning oder die Algorithmik durcharbeiten zu müssen

Hands On Machine Learning with Scikit Learn Keras and TensorFlow

Author: Aurélien Géron
Publisher: O'Reilly Media
ISBN: 1492032646
Release Date: 2019-01-04
Genre: Computers

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. The updated edition of this practical book uses concrete examples, minimal theory, and three production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. You'll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you've learned, all you need is programming experience to get started.

Datenanalyse mit Python

Author: Wes McKinney
Publisher: O'Reilly
ISBN: 9783960102144
Release Date: 2018-10-29
Genre: Computers

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

TensorFlow f r Dummies

Author: Matthew Scarpino
Publisher: John Wiley & Sons
ISBN: 9783527818969
Release Date: 2018-11-19
Genre: Computers

TensorFlow ist Googles herausragendes Werkzeug für das maschinelle Lernen, und dieses Buch macht es zugänglich, selbst wenn Sie bisher wenig über neuronale Netze und Deep Learning wissen. Sie erfahren, auf welchen Prinzipien TensorFlow basiert und wie Sie mit TensorFlow Anwendungen schreiben. Gleichzeitig lernen Sie die Konzepte des maschinellen Lernens kennen. Wenn Sie Softwareentwickler sind und TensorFlow in Zukunft einsetzen möchten, dann ist dieses Buch der richtige Einstieg für Sie. Greifen Sie auch zu, wenn Sie einfach mehr über das maschinelle Lernen erfahren wollen.

Advances in Financial Machine Learning

Author: Marcos Lopez de Prado
Publisher: John Wiley & Sons
ISBN: 9781119482109
Release Date: 2018-02-02
Genre: Business & Economics

Machine learning (ML) is changing virtually every aspect of our lives. Today ML algorithms accomplish tasks that until recently only expert humans could perform. As it relates to finance, this is the most exciting time to adopt a disruptive technology that will transform how everyone invests for generations. Readers will learn how to structure Big data in a way that is amenable to ML algorithms; how to conduct research with ML algorithms on that data; how to use supercomputing methods; how to backtest your discoveries while avoiding false positives. The book addresses real-life problems faced by practitioners on a daily basis, and explains scientifically sound solutions using math, supported by code and examples. Readers become active users who can test the proposed solutions in their particular setting. Written by a recognized expert and portfolio manager, this book will equip investment professionals with the groundbreaking tools needed to succeed in modern finance.

Einf hrung in Machine Learning mit Python

Author: Andreas C. Müller
Publisher: O'Reilly
ISBN: 9783960101123
Release Date: 2017-07-21
Genre: Computers

Machine Learning ist zu einem wichtigen Bestandteil vieler kommerzieller Anwendungen und Forschungsprojekte geworden, von der medizinischen Diagnostik bis hin zur Suche nach Freunden in sozialen Netzwerken. Um Machine-Learning-Anwendungen zu entwickeln, braucht es keine großen Expertenteams: Wenn Sie Python-Grundkenntnisse mitbringen, zeigt Ihnen dieses Praxisbuch, wie Sie Ihre eigenen Machine-Learning-Lösungen erstellen. Mit Python und der scikit-learn-Bibliothek erarbeiten Sie sich alle Schritte, die für eine erfolgreiche Machine-Learning-Anwendung notwendig sind. Die Autoren Andreas Müller und Sarah Guido konzentrieren sich bei der Verwendung von Machine-Learning-Algorithmen auf die praktischen Aspekte statt auf die Mathematik dahinter. Wenn Sie zusätzlich mit den Bibliotheken NumPy und matplotlib vertraut sind, hilft Ihnen dies, noch mehr aus diesem Tutorial herauszuholen. Das Buch zeigt Ihnen: - grundlegende Konzepte und Anwendungen von Machine Learning - Vor- und Nachteile weit verbreiteter maschineller Lernalgorithmen - wie sich die von Machine Learning verarbeiteten Daten repräsentieren lassen und auf welche Aspekte der Daten Sie sich konzentrieren sollten - fortgeschrittene Methoden zur Auswertung von Modellen und zum Optimieren von Parametern - das Konzept von Pipelines, mit denen Modelle verkettet und Arbeitsabläufe gekapselt werden - Arbeitsmethoden für Textdaten, insbesondere textspezifische Verarbeitungstechniken - Möglichkeiten zur Verbesserung Ihrer Fähigkeiten in den Bereichen Machine Learning und Data Science Dieses Buch ist eine fantastische, super praktische Informationsquelle für jeden, der mit Machine Learning in Python starten möchte – ich wünschte nur, es hätte schon existiert, als ich mit scikit-learn anfing! Hanna Wallach, Senior Researcher, Microsoft Research

Praxiseinstieg Deep Learning

Author: Ramon Wartala
Publisher: O'Reilly
ISBN: 9783960101574
Release Date: 2018-01-02
Genre: Computers

Deep Learning ist ein Teilbereich des Machine Learning und basiert auf künstlichen neuronalen Netzen. Dieser praktische Leitfaden bietet einen schnellen Einstieg in die Schlüsseltechnologie und erschließt Grundlagen und Arbeitsweisen von Deep Learning. Anhand Python-basierter Beispielanwendungen wird der Umgang mit den Frameworks Caffe/Caffe2 und TensorFlow gezeigt. Einfache, alltagstaugliche Beispiele laden zum Nachprogrammieren ein. Darüber hinaus erfahren Sie, warum moderne Grafikkarten, Big Data und Cloud Computing beim Deep Learning so wichtig sind. Wenn Sie bereits mit Python, NumPy und matplotlib arbeiten, ermöglicht Ihnen dieses Buch, praktische Erfahrungen mit Deep-Learning-Anwendungen zu machen. Deep Learning – die Hintergründe - Lernmethoden, die Deep Learning zugrunde liegen - Aktuelle Anwendungsfelder wie maschinelle Übersetzungen, Sprach- und Bilderkennung bei Google, Facebook, IBM oder Amazon Der Werkzeugkasten mit Docker - Der Docker-Container zum Buch: Alle nötigen Tools und Programme sind bereits installiert, damit Sie die Beispiele des Buchs und eigene Deep-Learning-Anwendungen leicht ausführen können. - Die Arbeitsumgebung kennenlernen: Jupyter Notebook, Beispieldatensätze, Web Scraping Der Praxiseinstieg - Einführung in Caffe/Caffe2 und TensorFlow - Deep-Learning-Anwendungen nachprogrammieren: Handschrifterkennung, Bilderkennung und -klassifizierung, Deep Dreaming - Lösungen für Big-Data-Szenarien: verteilte Anwendungen, Spark, Cloud-Systeme - Modelle in produktive Systeme überführen

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 9783897216501
Release Date: 2010-12-31
Genre: Computers

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Management digitaler Plattformen

Author: Manuel Wiesche
Publisher: Springer-Verlag
ISBN: 9783658212148
Release Date: 2018-04-19
Genre: Computers

Dieser Sammelband zum Projekt „ExCELL – Echtzeitanalyse und Crowdsourcing für intelligente City-Logistik“ zeigt das Potential von Smart Data für die Entwicklung intelligenter Mobilitätsdienste. Die Autoren beschreiben, wie datengetriebene Plattformen innovative Geschäftsmodelle ermöglichen und damit intelligente Mobilität und Logistik in Städten fördern.

Algorithmen und Datenstrukturen

Author: Thomas Ottmann
Publisher: Springer-Verlag
ISBN: 9783827428042
Release Date: 2011-12-27
Genre: Computers

Dieses bestens eingeführte Lehrbuch wendet sich an Studierende der Informatik in Grund- und Hauptstudium. Es behandelt gut verständlich alle Themen, die üblicherweise in der Standardvorlesung "Algorithmen und Datenstrukturen” vermittelt werden. Die einzelnen Algorithmen werden theoretisch fundiert dargestellt; ihre Funktionsweise wird ausführlich anhand vieler Beispiele erläutert. Zusätzlich zur halbformalen Beschreibung werden wichtige Algorithmen in Java formuliert. Das Themenspektrum reicht von Algorithmen zum Suchen und Sortieren über Hashverfahren, Bäume, Manipulation von Mengen bis hin zu Geometrischen Algorithmen und Graphenalgorithmen. Dabei werden sowohl der Entwurf effizienter Algorithmen und Datenstrukturen als auch die Analyse ihres Verhaltens mittels mathematischer Methoden behandelt. Durch eine übersichtliche Gliederung, viele Abbildungen und eine präzise Sprache gelingt den Autoren in vorbildlicher Weise die Vermittlung des vielschichtigen Themengebiets. Die 5. Auflage ist vollständig durchgesehen und überarbeitet. Neu aufgenommen wurden Einführungen in die Themen Dynamisches Programmieren, Backtracking, Onlinealgorithmen, Approximationsalgorithmen sowie einige Algorithmen für spezielle Probleme wie die schnelle Multiplikation von Matrizen, von ganzen Zahlen, und die Konstruktion der konvexen Hülle von Punkten in der Ebene. Das Buch eignet sich zur Vorlesungsbegleitung, zum Selbststudium und zum Nachschlagen. Eine Vielzahl von Aufgaben dient der weiteren Vertiefung des Gelernten. Unter http://ad.informatik.uni-freiburg.de/bibliothek/books/ad-buch/ werden Java-Programme für die wichtigsten Algorithmen und ergänzende Materialien zum Buch bereitgestellt.

VBA f r Dummies

Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 9783527657476
Release Date: 2013-01-03
Genre: Computers

Mit VBA (Visual Basic f?r Applikationen) k?nnen Sie Applikationen, zum Beispiel die Microsoft-Office-Komponenten Word, Excel und Access, auf Ihre Bed?rfnisse zuschneiden und somit Programmabl?ufe steuern. In "VBA f?r Dummies" zeigt Ihnen John Paul Mueller, wie Sie eigene Benutzeroberfl?chen f?r die Microsoft-Office-2007-Applikationen erstellen, strukturierte VBA-Programme schreiben und t?gliche Arbeiten automatisieren k?nnen. Er erkl?rt, wie Sie Formulare gestalten, Fehler in der VBA-Programmierung suchen und beheben und er f?hrt Sie in die objektorientierte Programmierung ein. Au?erdem zeigt er, wie Sie die neue Multifunktionsleiste in den Office-2007-Anwendungen an Ihre Anforderungen anpassen, wie Sie digitale Signaturen in Dokumente einbinden, XML-Dokumente mit VBA weiterentwickeln und alte VBA-Codes schnell aktualisieren.