Algebraic Topology Homotopy and Homology

Author: Robert M. Switzer
Publisher: Springer
ISBN: 9783642619236
Release Date: 2017-12-01
Genre: Mathematics

From the reviews: "The author has attempted an ambitious and most commendable project. [...] The book contains much material that has not previously appeared in this format. The writing is clean and clear and the exposition is well motivated. [...] This book is, all in all, a very admirable work and a valuable addition to the literature." Mathematical Reviews

C

Author: Saunders Mac Lane
Publisher: Springer Science & Business Media
ISBN: 3540586628
Release Date: 1995-02-15
Genre: Mathematics

In presenting this treatment of homological algebra, it is a pleasure to acknowledge the help and encouragement which I have had from all sides. Homological algebra arose from many sources in algebra and topology. Decisive examples came from the study of group extensions and their factor sets, a subject I learned in joint work with OTTO SCHIL LING. A further development of homological ideas, with a view to their topological applications, came in my long collaboration with SAMUEL ElLENBERG; to both collaborators, especial thanks. For many years the Air Force Office of Scientific Research supported my research projects on various subjects now summarized here; it is a pleasure to acknowledge their lively understanding of basic science. Both REINHOLD BAER and JOSEF SCHMID read and commented on my entire manuscript; their advice has led to many improvements. ANDERS KOCK and JACQUES RIGUET have read the entire galley proof and caught many slips and obscurities. Among the others whose sug gestions have served me well, I note FRANK ADAMS, LOUIS AUSLANDER, WILFRED COCKCROFT, ALBRECHT DOLD, GEOFFREY HORROCKS, FRIED RICH KASCH, JOHANN LEICHT, ARUNAS LIULEVICIUS, JOHN MOORE, DIE TER PUPPE, JOSEPH YAO, and a number of my current students at the University of Chicago - not to m~ntion the auditors of my lectures at Chicago, Heidelberg, Bonn, Frankfurt, and Aarhus. My wife, DOROTHY, has cheerfully typed more versions of more chapters than she would like to count. Messrs.

Elements of Homology Theory

Author: Viktor Vasilʹevich Prasolov
Publisher: American Mathematical Soc.
ISBN: 9780821838129
Release Date: 2007
Genre: Mathematics

The book is a continuation of the previous book by the author (Elements of Combinatorial and Differential Topology, Graduate Studies in Mathematics, Volume 74, American Mathematical Society, 2006). It starts with the definition of simplicial homology and cohomology, with many examples and applications. Then the Kolmogorov-Alexander multiplication in cohomology is introduced. A significant part of the book is devoted to applications of simplicial homology and cohomology to obstruction theory, in particular, to characteristic classes of vector bundles. The later chapters are concerned with singular homology and cohomology, and Cech and de Rham cohomology. The book ends with various applications of homology to the topology of manifolds, some of which might be of interest to experts in the area. The book contains many problems; almost all of them are provided with hints or complete solutions.

Lectures on Algebraic Topology

Author: Albrecht Dold
Publisher: Springer Science & Business Media
ISBN: 9783642678219
Release Date: 2012-12-06
Genre: Mathematics

Springer is reissuing a selected few highly successful books in a new, inexpensive softcover edition to make them easily accessible to younger generations of students and researchers. Springer-Verlag began publishing books in higher mathematics in 1920. This is a reprint of the Second Edition.

Stable Homotopy and Generalised Homology

Author: J. F. Adams
Publisher: University of Chicago Press
ISBN: 0226005240
Release Date: 1995-02-27
Genre: Mathematics

J. Frank Adams, the founder of stable homotopy theory, gave a lecture series at the University of Chicago in 1967, 1970, and 1971, the well-written notes of which are published in this classic in algebraic topology. The three series focused on Novikov's work on operations in complex cobordism, Quillen's work on formal groups and complex cobordism, and stable homotopy and generalized homology. Adams's exposition of the first two topics played a vital role in setting the stage for modern work on periodicity phenomena in stable homotopy theory. His exposition on the third topic occupies the bulk of the book and gives his definitive treatment of the Adams spectral sequence along with many detailed examples and calculations in KU-theory that help give a feel for the subject.

Lectures on Functor Homology

Author: Vincent Franjou
Publisher: Birkhäuser
ISBN: 9783319213057
Release Date: 2015-12-08
Genre: Mathematics

This book features a series of lectures that explores three different fields in which functor homology (short for homological algebra in functor categories) has recently played a significant role. For each of these applications, the functor viewpoint provides both essential insights and new methods for tackling difficult mathematical problems. In the lectures by Aurélien Djament, polynomial functors appear as coefficients in the homology of infinite families of classical groups, e.g. general linear groups or symplectic groups, and their stabilization. Djament’s theorem states that this stable homology can be computed using only the homology with trivial coefficients and the manageable functor homology. The series includes an intriguing development of Scorichenko’s unpublished results. The lectures by Wilberd van der Kallen lead to the solution of the general cohomological finite generation problem, extending Hilbert’s fourteenth problem and its solution to the context of cohomology. The focus here is on the cohomology of algebraic groups, or rational cohomology, and the coefficients are Friedlander and Suslin’s strict polynomial functors, a conceptual form of modules over the Schur algebra. Roman Mikhailov’s lectures highlight topological invariants: homoto py and homology of topological spaces, through derived functors of polynomial functors. In this regard the functor framework makes better use of naturality, allowing it to reach calculations that remain beyond the grasp of classical algebraic topology. Lastly, Antoine Touzé’s introductory course on homological algebra makes the book accessible to graduate students new to the field. The links between functor homology and the three fields mentioned above offer compelling arguments for pushing the development of the functor viewpoint. The lectures in this book will provide readers with a feel for functors, and a valuable new perspective to apply to their favourite problems.

Monopoles and Three Manifolds

Author: Peter Kronheimer
Publisher: Cambridge University Press
ISBN: 9781139468664
Release Date: 2007-12-20
Genre: Mathematics

Originating with Andreas Floer in the 1980s, Floer homology has proved to be an effective tool in tackling many important problems in three- and four-dimensional geometry and topology. This 2007 book provides a comprehensive treatment of Floer homology, based on the Seiberg–Witten monopole equations. After first providing an overview of the results, the authors develop the analytic properties of the Seiberg–Witten equations, assuming only a basic grounding in differential geometry and analysis. The Floer groups of a general three-manifold are then defined and their properties studied in detail. Two final chapters are devoted to the calculation of Floer groups and to applications of the theory in topology. Suitable for beginning graduate students and researchers, this book provides a full discussion of a central part of the study of the topology of manifolds.

Computer Algebra in Scientific Computing

Author: V.G. Ganzha
Publisher: Springer
ISBN: 9783540451952
Release Date: 2006-11-30
Genre: Computers

This book constitutes the refereed proceedings of the 9th International Workshop on Computer Algebra in Scientific Computing, CASC 2006. The book presents 25 revised full papers together with 2 invited papers, covering various expanding applications of computer algebra to scientific computing, the computer algebra systems themselves, and the CA algorithms. Topics addressed are studies in Gröbner bases, polynomial algebra, homological algebra, quantifier elimination, celestial mechanics, and more.

Computer Algebra in Scientific Computing CASC 2001

Author: Viktor G. Ganzha
Publisher: Springer Science & Business Media
ISBN: 9783642566660
Release Date: 2012-12-06
Genre: Computers

CASC 2001 continues a tradition ~ started in 1998 ~ of international con ferences on the latest advances in the application of computer algebra systems to the solution of various problems in scientific computing. The three ear (CASs) lier conferences in this sequence, CASC'98, CASC'99, and CASC 2000, were held, Petersburg, Russia, in Munich, Germany, and in Samarkand, respectively, in St. Uzbekistan, and proved to be very successful. We have to thank the program committee, listed overleaf, for a tremendous job in soliciting and providing reviews for the submitted papers. There were more than three reviews per submission on average. The result of this job is reflected in the present volume, which contains revised versions of the accepted papers. The collection of papers included in the proceedings covers various topics of computer algebra methods, algorithms and software applied to scientific computing. In particular, five papers are devoted to the implementation of the analysis of involutive systems with the aid of CASso The specific examples include new efficient algorithms for the computation of Janet bases for monomial ideals, involutive division, involutive reduction method, etc. A number of papers deal with application of CASs for obtaining and vali dating new exact solutions to initial and boundary value problems for partial differential equations in mathematical physics. Several papers show how CASs can be used to obtain analytic solutions of initial and boundary value problems for ordinary differential equations and for studying their properties.

Classics of Mathematics

Author: Ronald Calinger
Publisher: Pearson College Division
ISBN: 002318342X
Release Date: 1995
Genre: Mathematics

Appropriate for undergraduate and select graduate courses in the history of mathematics, and in the history of science. This edited volume of readings contains more than 130 selections from eminent mathematicians from A `h-mose' to Hilbert and Noether. The chapter introductions comprise a concise history of mathematics based on critical textual analysis and the latest scholarship. Each reading is preceded by a substantial biography of its author.

An Invitation to Morse Theory

Author: Liviu I. Nicolaescu
Publisher: Springer Science & Business Media
ISBN: 9780387495095
Release Date: 2007
Genre: Mathematics

This book offers readers a taste of the "unreasonable effectiveness" of Morse theory. It covers many of the most important topics in Morse theory along with applications. The book details topics such as Morse-Smale flows, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. In addition, many examples, problems, and illustrations further enhance the value of this useful introduction to Morse Theory.

Combinatorial Algebraic Topology

Author: Dimitry Kozlov
Publisher: Springer Science & Business Media
ISBN: 9783540719625
Release Date: 2007-12-29
Genre: Mathematics

This volume is the first comprehensive treatment of combinatorial algebraic topology in book form. The first part of the book constitutes a swift walk through the main tools of algebraic topology. Readers - graduate students and working mathematicians alike - will probably find particularly useful the second part, which contains an in-depth discussion of the major research techniques of combinatorial algebraic topology. Although applications are sprinkled throughout the second part, they are principal focus of the third part, which is entirely devoted to developing the topological structure theory for graph homomorphisms.

Topology and Geometry for Physicists

Author: Charles Nash
Publisher: Courier Corporation
ISBN: 9780486318363
Release Date: 2013-08-16
Genre: Mathematics

Differential geometry and topology are essential tools for many theoretical physicists, particularly in the study of condensed matter physics, gravity, and particle physics. Written by physicists for physics students, this text introduces geometrical and topological methods in theoretical physics and applied mathematics. It assumes no detailed background in topology or geometry, and it emphasizes physical motivations, enabling students to apply the techniques to their physics formulas and research. "Thoroughly recommended" by The Physics Bulletin, this volume's physics applications range from condensed matter physics and statistical mechanics to elementary particle theory. Its main mathematical topics include differential forms, homotopy, homology, cohomology, fiber bundles, connection and covariant derivatives, and Morse theory.

Modern Classical Homotopy Theory

Author: Jeffrey Strom
Publisher: American Mathematical Soc.
ISBN: 9780821852866
Release Date: 2011-10-19
Genre: Mathematics

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Cyclic Homology

Author: Jean-Louis Loday
Publisher: Springer Science & Business Media
ISBN: 9783662217399
Release Date: 2013-06-29
Genre: Mathematics

This book is a comprehensive study of cyclic homology theory together with its relationship with Hochschild homology, de Rham cohomology, S1 equivariant homology, the Chern character, Lie algebra homology, algebraic K-theory and non-commutative differential geometry. Though conceived as a basic reference on the subject, many parts of this book are accessible to graduate students.