Homotopy Methods in Topological Fixed and Periodic Points Theory

Author: Jerzy Jezierski
Publisher: Springer Science & Business Media
ISBN: 9781402039317
Release Date: 2006-01-17
Genre: Mathematics

The notion of a ?xed point plays a crucial role in numerous branches of mat- maticsand its applications. Informationabout the existence of such pointsis often the crucial argument in solving a problem. In particular, topological methods of ?xed point theory have been an increasing focus of interest over the last century. These topological methods of ?xed point theory are divided, roughly speaking, into two types. The ?rst type includes such as the Banach Contraction Principle where the assumptions on the space can be very mild but a small change of the map can remove the ?xed point. The second type, on the other hand, such as the Brouwer and Lefschetz Fixed Point Theorems, give the existence of a ?xed point not only for a given map but also for any its deformations. This book is an exposition of a part of the topological ?xed and periodic point theory, of this second type, based on the notions of Lefschetz and Nielsen numbers. Since both notions are homotopyinvariants, the deformationis used as an essential method, and the assertions of theorems typically state the existence of ?xed or periodic points for every map of the whole homotopy class, we refer to them as homotopy methods of the topological ?xed and periodic point theory.

Topological Fixed Point Theory of Multivalued Mappings

Author: Lech Górniewicz
Publisher: Springer Science & Business Media
ISBN: 9781402046667
Release Date: 2006-06-03
Genre: Mathematics

This book is devoted to the topological fixed point theory of multivalued mappings including applications to differential inclusions and mathematical economy. It is the first monograph dealing with the fixed point theory of multivalued mappings in metric ANR spaces. Although the theoretical material was tendentiously selected with respect to applications, the text is self-contained. Current results are presented.

Dynamics and Numbers

Author: Sergiǐ Kolyada:
Publisher: American Mathematical Soc.
ISBN: 9781470420208
Release Date: 2016-07-27
Genre: Ergodic theory

This volume contains a collection of survey and research articles from the special program and international conference on Dynamics and Numbers held at the Max-Planck Institute for Mathematics in Bonn, Germany in 2014. The papers reflect the great diversity and depth of the interaction between number theory and dynamical systems and geometry in particular. Topics covered in this volume include symbolic dynamics, Bratelli diagrams, geometry of laminations, entropy, Nielsen theory, recurrence, topology of the moduli space of interval maps, and specification properties.

DCDS A

Author:
Publisher:
ISBN: UOM:39015072621546
Release Date: 2008
Genre: Mathematics


Fixed Point Theory

Author: Andrzej Granas
Publisher: Springer Science & Business Media
ISBN: 9780387215938
Release Date: 2013-03-09
Genre: Mathematics

The theory of Fixed Points is one of the most powerful tools of modern mathematics. This book contains a clear, detailed and well-organized presentation of the major results, together with an entertaining set of historical notes and an extensive bibliography describing further developments and applications. From the reviews: "I recommend this excellent volume on fixed point theory to anyone interested in this core subject of nonlinear analysis." --MATHEMATICAL REVIEWS

Topological Fixed Point Theory and Applications

Author: Boju Jiang
Publisher: Springer
ISBN: 9783540468622
Release Date: 2006-11-14
Genre: Mathematics

This selection of papers from the Beijing conference gives a cross-section of the current trends in the field of fixed point theory as seen by topologists and analysts. Apart from one survey article, they are all original research articles, on topics including equivariant theory, extensions of Nielsen theory, periodic orbits of discrete and continuous dynamical systems, and new invariants and techniques in topological approaches to analytic problems.

Fixed Points and Topological Degree in Nonlinear Analysis

Author: Jane Cronin
Publisher: American Mathematical Soc.
ISBN: 9780821815113
Release Date: 1995-01-05
Genre: Electronic books

The topological methods based on fixed-point theory and on local topological degree which have been developed by Leray, Schauder, Nirenberg, Cesari and others for the study of nonlinear differential equations are here described in detail, beginning with elementary considerations. The reader is not assumed to have any knowledge of topology beyond the theory of point sets in Euclidean n-space which ordinarily forms part of a course in advanced calculus. The methods are first developed for Euclidean n-space and applied to the study of existence and stability of periodic and almost-periodic solutions of systems of ordinary differential equations, both quasi-linear and with ``large'' nonlinearities. Then, after being extended to infinite-dimensional ``function-spaces'', these methods are applied to integral equations, partial differential equations and further problems concerning periodic solutions of ordinary differential equations.

Topological Degree Approach to Bifurcation Problems

Author: Michal Fečkan
Publisher: Springer Science & Business Media
ISBN: 9781402087240
Release Date: 2008-06-29
Genre: Mathematics

1. 1 Preface Many phenomena from physics, biology, chemistry and economics are modeled by di?erential equations with parameters. When a nonlinear equation is est- lished, its behavior/dynamics should be understood. In general, it is impossible to ?nd a complete dynamics of a nonlinear di?erential equation. Hence at least, either periodic or irregular/chaotic solutions are tried to be shown. So a pr- erty of a desired solution of a nonlinear equation is given as a parameterized boundary value problem. Consequently, the task is transformed to a solvability of an abstract nonlinear equation with parameters on a certain functional space. When a family of solutions of the abstract equation is known for some para- ters, the persistence or bifurcations of solutions from that family is studied as parameters are changing. There are several approaches to handle such nonl- ear bifurcation problems. One of them is a topological degree method, which is rather powerful in cases when nonlinearities are not enough smooth. The aim of this book is to present several original bifurcation results achieved by the author using the topological degree theory. The scope of the results is rather broad from showing periodic and chaotic behavior of non-smooth mechanical systems through the existence of traveling waves for ordinary di?erential eq- tions on in?nite lattices up to study periodic oscillations of undamped abstract waveequationsonHilbertspaceswithapplicationstononlinearbeamandstring partial di?erential equations. 1.

Theory of degrees with applications to bifurcations and differential equations

Author: Wiesław Krawcewicz
Publisher: Wiley-Interscience
ISBN: UOM:39015040643788
Release Date: 1997-02-05
Genre: Mathematics

This book provides an introduction to degree theory and its applications to nonlinear differential equations. It uses an applications-oriented to address functional analysis, general topology and differential equations and offers a unified treatment of the classical Brouwer degree, the recently developed S?1-degree and the Dold-Ulrich degree for equivalent mappings and bifurcation problems. It integrates two seemingly disparate concepts, beginning with review material before shifting to classical theory and advanced application techniques.