Hyperbolic Partial Differential Equations

Author: Peter D. Lax
Publisher: American Mathematical Soc.
ISBN: 9780821835760
Release Date: 2006
Genre: Mathematics

The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves. The second part describes finite difference approximations of hyperbolic equations, presents a streamlined version of the Lax-Phillips scattering theory, and covers basic concepts and results for hyperbolic systems of conservation laws, an active research area today. Four brief appendices sketch topics that are important or amusing, such as Huygens' principle and a theory of mixed initial and boundary value problems. A fifth appendix by Cathleen Morawetz describes a nonstandard energy identity and its uses.

Hyperbolic Partial Differential Equations and Geometric Optics

Author: Jeffrey Rauch
Publisher: American Mathematical Soc.
ISBN: 9780821872918
Release Date: 2012-05-01
Genre: Mathematics

This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which are used, in particular, to describe propagation of waves at finite speed. Among the topics carefully presented in the book are nonlinear geometric optics, the asymptotic analysis of short wavelength solutions, and nonlinear interaction of such waves. Studied in detail are the damping of waves, resonance, dispersive decay, and solutions to the compressible Euler equations with dense oscillations created by resonant interactions. Many fundamental results are presented for the first time in a textbook format. In addition to dense oscillations, these include the treatment of precise speed of propagation and the existence and stability questions for the three wave interaction equations. One of the strengths of this book is its careful motivation of ideas and proofs, showing how they evolve from related, simpler cases. This makes the book quite useful to both researchers and graduate students interested in hyperbolic partial differential equations. Numerous exercises encourage active participation of the reader. The author is a professor of mathematics at the University of Michigan. A recognized expert in partial differential equations, he has made important contributions to the transformation of three areas of hyperbolic partial differential equations: nonlinear microlocal analysis, the control of waves, and nonlinear geometric optics.

Partial Differential Equations

Author: Lawrence C. Evans
Publisher: American Mathematical Soc.
ISBN: 9780821849743
Release Date: 2010
Genre: Mathematics

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail. ... Evans' book is evidence of his mastering of the field and the clarity of presentation. --Luis Caffarelli, University of Texas It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ... Every graduate student in analysis should read it. --David Jerison, MIT I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ... I am very happy with the preparation it provides my students. --Carlos Kenig, University of Chicago Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ... An outstanding reference for many aspects of the field. --Rafe Mazzeo, Stanford University

Evolution Equations

Author: David Ellwood
Publisher: American Mathematical Soc.
ISBN: 9780821868614
Release Date: 2013-06-26
Genre: Mathematics

This volume is a collection of notes from lectures given at the 2008 Clay Mathematics Institute Summer School, held in Zürich, Switzerland. The lectures were designed for graduate students and mathematicians within five years of the Ph.D., and the main focus of the program was on recent progress in the theory of evolution equations. Such equations lie at the heart of many areas of mathematical physics and arise not only in situations with a manifest time evolution (such as linear and nonlinear wave and Schrödinger equations) but also in the high energy or semi-classical limits of elliptic problems. The three main courses focused primarily on microlocal analysis and spectral and scattering theory, the theory of the nonlinear Schrödinger and wave equations, and evolution problems in general relativity. These major topics were supplemented by several mini-courses reporting on the derivation of effective evolution equations from microscopic quantum dynamics; on wave maps with and without symmetries; on quantum N-body scattering, diffraction of waves, and symmetric spaces; and on nonlinear Schrödinger equations at critical regularity. Although highly detailed treatments of some of these topics are now available in the published literature, in this collection the reader can learn the fundamental ideas and tools with a minimum of technical machinery. Moreover, the treatment in this volume emphasizes common themes and techniques in the field, including exact and approximate conservation laws, energy methods, and positive commutator arguments. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).

Industrial Mathematics and Complex Systems

Author: Pammy Manchanda
Publisher: Springer
ISBN: 9789811037580
Release Date: 2017-10-18
Genre: Mathematics

The book discusses essential topics in industrial and applied mathematics such as image processing with a special focus on medical imaging, biometrics and tomography. Applications of mathematical concepts to areas like national security, homeland security and law enforcement, enterprise and e-government services, personal information and business transactions, and brain-like computers are also highlighted. These contributions – all prepared by respected academicians, scientists and researchers from across the globe – are based on papers presented at the international conference organized on the occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM) held from 29 to 31 January 2016 at Sharda University, Greater Noida, India. The book will help young scientists and engineers grasp systematic developments in those areas of mathematics that are essential to properly understand challenging contemporary problems.

Elliptic Partial Differential Equations

Author: Qing Han
Publisher: American Mathematical Soc.
ISBN: 0821826913
Release Date: 1997
Genre: Mathematics

This volume is based on PDE (partial differential equations) courses given by the authors at the Courant Institute and at the University of Notre Dame. Presented are basic methods for obtaining various a priori estimates for second-order equations of elliptic type with particular emphasis on maximal principles, Harnack inequalities, and their applications. The equations considered in the book are linear, however, the presented methods also apply to nonlinear problems.

The Cauchy Problem for Hyperbolic Operators

Author: Karen Yagdjian
Publisher: John Wiley & Sons Incorporated
ISBN: 3055017390
Release Date: 1997
Genre: Mathematics

The goal of this book is a construction of the fundamental solution to the Cauchy problem for hyperbolic operators with multiple characteristics. Well-posedness of the problem in various functional spaces as well as a propagation of singularities of the solutions are investigated, too. Levy conditions described in the book allow to construct fundamental solutions. The approach represented in the book is essentially based on the zeros of the complete symbol of the operator. For operators with variable coefficients hyperbolicity conditions are formulated by means of these zeros similarly to Hadamard's conditions for operators with constant coefficient. This approach needs Fourier integral operators with inhomogeneous phase functions. Necessary knowledge on these ones is given, too.