Integral and Discrete Inequalities and Their Applications

Author: Yuming Qin
Publisher: Birkhäuser
ISBN: 9783319333045
Release Date: 2016-10-06
Genre: Mathematics

This book concentrates on one- and multi-dimensional nonlinear integral and discrete Gronwall-Bellman type inequalities. It complements the author’s book on linear inequalities and serves as an essential tool for researchers interested in differential (ODE and PDE), difference, and integral equations. The present volume is part 2 of the author’s two-volume work on inequalities. Integral and discrete inequalities are a very important tool in classical analysis and play a crucial role in establishing the well-posedness of the related equations, i.e., differential, difference and integral equations.

Advanced Inequalities

Author: George A. Anastassiou
Publisher: World Scientific
ISBN: 9789814317627
Release Date: 2011
Genre: Mathematics

This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end. The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and HardyOpial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and applications as well as ChebyshevGruss, Gruss and Comparison of Means inequalities are studied. The results presented are mostly optimal, that is the inequalities are sharp and attained. Applications in many areas of pure and applied mathematics, such as mathematical analysis, probability, ordinary and partial differential equations, numerical analysis, information theory, etc., are explored in detail, as such this monograph is suitable for researchers and graduate students. It will be a useful teaching material at seminars as well as an invaluable reference source in all science libraries.

Matrix Inequalities for Iterative Systems

Author: Hanjo Taubig
Publisher: CRC Press
ISBN: 9781351679091
Release Date: 2017-02-03
Genre: Mathematics

The book reviews inequalities for weighted entry sums of matrix powers. Applications range from mathematics and CS to pure sciences. It unifies and generalizes several results for products and powers of sesquilinear forms derived from powers of Hermitian, positive-semidefinite, as well as nonnegative matrices. It shows that some inequalities are valid only in specific cases. How to translate the Hermitian matrix results into results for alternating powers of general rectangular matrices? Inequalities that compare the powers of the row and column sums to the row and column sums of the matrix powers are refined for nonnegative matrices. Lastly, eigenvalue bounds and derive results for iterated kernels are improved.

Analysis and Geometry of Markov Diffusion Operators

Author: Dominique Bakry
Publisher: Springer Science & Business Media
ISBN: 9783319002279
Release Date: 2013-11-18
Genre: Mathematics

The present volume is an extensive monograph on the analytic and geometric aspects of Markov diffusion operators. It focuses on the geometric curvature properties of the underlying structure in order to study convergence to equilibrium, spectral bounds, functional inequalities such as Poincaré, Sobolev or logarithmic Sobolev inequalities, and various bounds on solutions of evolution equations. At the same time, it covers a large class of evolution and partial differential equations. The book is intended to serve as an introduction to the subject and to be accessible for beginning and advanced scientists and non-specialists. Simultaneously, it covers a wide range of results and techniques from the early developments in the mid-eighties to the latest achievements. As such, students and researchers interested in the modern aspects of Markov diffusion operators and semigroups and their connections to analytic functional inequalities, probabilistic convergence to equilibrium and geometric curvature will find it especially useful. Selected chapters can also be used for advanced courses on the topic.

Integration on Infinite Dimensional Surfaces and Its Applications

Author: A. Uglanov
Publisher: Springer Science & Business Media
ISBN: 9789401596220
Release Date: 2013-06-29
Genre: Mathematics

It seems hard to believe, but mathematicians were not interested in integration problems on infinite-dimensional nonlinear structures up to 70s of our century. At least the author is not aware of any publication concerning this theme, although as early as 1967 L. Gross mentioned that the analysis on infinite dimensional manifolds is a field of research with rather rich opportunities in his classical work [2. This prediction was brilliantly confirmed afterwards, but we shall return to this later on. In those days the integration theory in infinite dimensional linear spaces was essentially developed in the heuristic works of RP. Feynman [1], I. M. Gelfand, A. M. Yaglom [1]). The articles of J. Eells [1], J. Eells and K. D. Elworthy [1], H. -H. Kuo [1], V. Goodman [1], where the contraction of a Gaussian measure on a hypersurface, in particular, was built and the divergence theorem (the Gauss-Ostrogradskii formula) was proved, appeared only in the beginning of the 70s. In this case a Gaussian specificity was essential and it was even pointed out in a later monograph of H. -H. Kuo [3] that the surface measure for the non-Gaussian case construction problem is not simple and has not yet been solved. A. V. Skorokhod [1] and the author [6,10] offered different approaches to such a construction. Some other approaches were offered later by Yu. L. Daletskii and B. D. Maryanin [1], O. G. Smolyanov [6], N. V.

Integral Transformations Operational Calculus and Generalized Functions

Author: R.G. Buschman
Publisher: Springer Science & Business Media
ISBN: 9781461312833
Release Date: 2013-11-27
Genre: Mathematics

It is not the object of the author to present comprehensive cov erage of any particular integral transformation or of any particular development of generalized functions, for there are books available in which this is done. Rather, this consists more of an introductory survey in which various ideas are explored. The Laplace transforma tion is taken as the model type of an integral transformation and a number of its properties are developed; later, the Fourier transfor mation is introduced. The operational calculus of Mikusinski is pre sented as a method of introducing generalized functions associated with the Laplace transformation. The construction is analogous to the construction of the rational numbers from the integers. Further on, generalized functions associated with the problem of extension of the Fourier transformation are introduced. This construction is anal ogous to the construction of the reals from the rationals by means of Cauchy sequences. A chapter with sections on a variety of trans formations is adjoined. Necessary levels of sophistication start low in the first chapter, but they grow considerably in some sections of later chapters. Background needs are stated at the beginnings of each chapter. Many theorems are given without proofs, which seems appro priate for the goals in mind. A selection of references is included. Without showing many of the details of rigor it is hoped that a strong indication is given that a firm mathematical foundation does actu ally exist for such entities as the "Dirac delta-function".

Opial Inequalities with Applications in Differential and Difference Equations

Author: R.P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9789401584265
Release Date: 2013-03-09
Genre: Mathematics

In 1960 the Polish mathematician Zdzidlaw Opial (1930--1974) published an inequality involving integrals of a function and its derivative. This volume offers a systematic and up-to-date account of developments in Opial-type inequalities. The book presents a complete survey of results in the field, starting with Opial's landmark paper, traversing through its generalizations, extensions and discretizations. Some of the important applications of these inequalities in the theory of differential and difference equations, such as uniqueness of solutions of boundary value problems, and upper bounds of solutions are also presented. This book is suitable for graduate students and researchers in mathematical analysis and applications.

Ostrowski Type Inequalities and Applications in Numerical Integration

Author: Sever S. Dragomir
Publisher: Springer Science & Business Media
ISBN: 9789401725194
Release Date: 2013-03-14
Genre: Mathematics

It was noted in the preface of the book "Inequalities Involving Functions and Their Integrals and Derivatives", Kluwer Academic Publishers, 1991, by D.S. Mitrinovic, J.E. Pecaric and A.M. Fink; since the writing of the classical book by Hardy, Littlewood and Polya (1934), the subject of differential and integral inequalities has grown by about 800%. Ten years on, we can confidently assert that this growth will increase even more significantly. Twenty pages of Chapter XV in the above mentioned book are devoted to integral inequalities involving functions with bounded derivatives, or, Ostrowski type inequalities. This is now itself a special domain of the Theory of Inequalities with many powerful results and a large number of applications in Numerical Integration, Probability Theory and Statistics, Information Theory and Integral Operator Theory. The main aim of the present book, jointly written by the members of the Vic toria University node of RGMIA (Research Group in Mathematical Inequali ties and Applications, http: I /rgmia. vu. edu. au) and Th. M. Rassias, is to present a selected number of results on Ostrowski type inequalities. Results for univariate and multivariate real functions and their natural applications in the error analysis of numerical quadrature for both simple and multiple integrals as well as for the Riemann-Stieltjes integral are given.

Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis

Author: Changpin Li
Publisher: World Scientific
ISBN: 9789814436472
Release Date: 2013-01-11
Genre: Mathematics

Nonlinear dynamics is still a hot and challenging topic. In this edited book, we focus on fractional dynamics, infinite dimensional dynamics defined by the partial differential equation, network dynamics, fractal dynamics, and their numerical analysis and simulation. Fractional dynamics is a new topic in the research field of nonlinear dynamics which has attracted increasing interest due to its potential applications in the real world, such as modeling memory processes and materials. In this part, basic theory for fractional differential equations and numerical simulations for these equations will be introduced and discussed. In the infinite dimensional dynamics part, we emphasize on numerical calculation and theoretical analysis, including constructing various numerical methods and computing the corresponding limit sets, etc. In the last part, we show interest in network dynamics and fractal dynamics together with numerical simulations as well as their applications. Contents:Gronwall Inequalities (Fanhai Zeng, Jianxiong Cao and Changpin Li)Existence and Uniqueness of the Solutions to the Fractional Differential Equations (Yutian Ma, Fengrong Zhang and Changpin Li)Finite Element Methods for Fractional Differential Equations (Changpin Li and Fanhai Zeng)Fractional Step Method for the Nonlinear Conservation Laws with Fractional Dissipation (Can Li and Weihua Deng)Error Analysis of Spectral Method for the Space and Time Fractional Fokker–Planck Equation (Tinggang Zhao and Haiyan Xuan)A Discontinuous Finite Element Method for a Type of Fractional Cauchy Problem (Yunying Zheng)Asymptotic Analysis of a Singularly Perturbed Parabolic Problem in a General Smooth Domain (Yu-Jiang Wu, Na Zhang and Lun-Ji Song)Incremental Unknowns Methods for the ADI and ADSI Schemes (Ai-Li Yang, Yu-Jiang Wu and Zhong-Hua Yang)Stability of a Collocated FV Scheme for the 3D Navier–Stokes Equations (Xu Li and Shu-qin Wang)Computing the Multiple Positive Solutions to p–Henon Equation on the Unit Square (Zhaoxiang Li and Zhonghua Yang)Multilevel WBIUs Methods for Reaction–Diffusion Equations (Yang Wang, Yu-Jiang Wu and Ai-Li Yang)Models and Dynamics of Deterministically Growing Networks (Weigang Sun, Jingyuan Zhang and Guanrong Chen)On Different Approaches to Synchronization of Spatiotemporal Chaos in Complex Networks (Yuan Chai and Li-Qun Chen)Chaotic Dynamical Systems on Fractals and Their Applications to Image Encryption (Ruisong Ye, Yuru Zou and Jian Lu)Planar Crystallographic Symmetric Tiling Patterns Generated From Invariant Maps (Ruisong Ye, Haiying Zhao and Yuanlin Ma)Complex Dynamics in a Simple Two-Dimensional Discrete System (Huiqing Huang and Ruisong Ye)Approximate Periodic Solutions of Damped Harmonic Oscillators with Delayed Feedback (Qian Guo)The Numerical Methods in Option Pricing Problem (Xiong Bo)Synchronization and Its Control Between Two Coupled Networks (Yongqing Wu and Minghai Lü) Readership: Senior undergraduates, postgraduates and experts in nonlinear dynamics with numerical analysis. Keywords:Fractional Dynamics;Infinite Dimensional Dynamics;Network Dynamics;Fractal DynamicsKey Features:The topics in this edited book are very hot and highly impressiveIssues and methods of such topics in this edited book have not been made available yetThe present edited book is suitable for various levels of researchers, such as senior undergraduates, postgraduates, and experts

Convex Functions and their Applications

Author: Constantin Niculescu
Publisher: Springer Science & Business Media
ISBN: 9780387310770
Release Date: 2006-02-11
Genre: Mathematics

Thorough introduction to an important area of mathematics Contains recent results Includes many exercises

Advanced Integration Theory

Author: Corneliu Constantinescu
Publisher: Springer Science & Business Media
ISBN: 9789400708525
Release Date: 2012-12-06
Genre: Mathematics

Since about 1915 integration theory has consisted of two separate branches: the abstract theory required by probabilists and the theory, preferred by analysts, that combines integration and topology. As long as the underlying topological space is reasonably nice (e.g., locally compact with countable basis) the abstract theory and the topological theory yield the same results, but for more compli cated spaces the topological theory gives stronger results than those provided by the abstract theory. The possibility of resolving this split fascinated us, and it was one of the reasons for writing this book. The unification of the abstract theory and the topological theory is achieved by using new definitions in the abstract theory. The integral in this book is de fined in such a way that it coincides in the case of Radon measures on Hausdorff spaces with the usual definition in the literature. As a consequence, our integral can differ in the classical case. Our integral, however, is more inclusive. It was defined in the book "C. Constantinescu and K. Weber (in collaboration with A.