Integral Transforms and Their Applications

Author: Lokenath Debnath
Publisher: CRC Press
ISBN: 1420010913
Release Date: 2016-04-19
Genre: Mathematics

Keeping the style, content, and focus that made the first edition a bestseller, Integral Transforms and their Applications, Second Edition stresses the development of analytical skills rather than the importance of more abstract formulation. The authors provide a working knowledge of the analytical methods required in pure and applied mathematics, physics, and engineering. The second edition includes many new applications, exercises, comments, and observations with some sections entirely rewritten. It contains more than 500 worked examples and exercises with answers as well as hints to selected exercises. The most significant changes in the second edition include: New chapters on fractional calculus and its applications to ordinary and partial differential equations, wavelets and wavelet transformations, and Radon transform Revised chapter on Fourier transforms, including new sections on Fourier transforms of generalized functions, Poissons summation formula, Gibbs phenomenon, and Heisenbergs uncertainty principle A wide variety of applications has been selected from areas of ordinary and partial differential equations, integral equations, fluid mechanics and elasticity, mathematical statistics, fractional ordinary and partial differential equations, and special functions A broad spectrum of exercises at the end of each chapter further develops analytical skills in the theory and applications of transform methods and a deeper insight into the subject A systematic mathematical treatment of the theory and method of integral transforms, the book provides a clear understanding of the subject and its varied applications in mathematics, applied mathematics, physical sciences, and engineering.

Integral Transforms and Their Applications

Author: Brian Davies
Publisher: Springer Science & Business Media
ISBN: 0387953140
Release Date: 2002-01-02
Genre: Mathematics

This is a substantially updated, extended and reorganized third edition of an introductory text on the use of integral transforms. Chapter I is largely new, covering introductory aspects of complex variable theory. Emphasis is on the development of techniques and the connection between properties of transforms and the kind of problems for which they provide tools. Around 400 problems are accompanied in the text. It will be useful for graduate students and researchers working in mathematics and physics.

Local Fractional Integral Transforms and Their Applications

Author: Xiao Jun Yang
Publisher: Academic Press
ISBN: 9780128040324
Release Date: 2015-10-22
Genre: Mathematics

Local Fractional Integral Transforms and Their Applications provides information on how local fractional calculus has been successfully applied to describe the numerous widespread real-world phenomena in the fields of physical sciences and engineering sciences that involve non-differentiable behaviors. The methods of integral transforms via local fractional calculus have been used to solve various local fractional ordinary and local fractional partial differential equations and also to figure out the presence of the fractal phenomenon. The book presents the basics of the local fractional derivative operators and investigates some new results in the area of local integral transforms. Provides applications of local fractional Fourier Series Discusses definitions for local fractional Laplace transforms Explains local fractional Laplace transforms coupled with analytical methods

The Fourier Transform and Its Applications

Author: Ronald Newbold Bracewell
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: UCSD:31822031267685
Release Date: 2000
Genre: Mathematics

This text is designed for use in a senior undergraduate or graduate level course in Fourier Transforms. This text differs from many other fourier transform books in its emphasis on applications. Bracewell applies mathematical concepts to the physical world throughout this text, equipping students to think about the world and physics in terms of transforms.The pedagogy in this classic text is excellent. The author has included such tools as the pictorial dictionary of transforms and bibliographic references. In addition, there are many excellent problems throughout this book, which are more than mathematical exercises, often requiring students to think in terms of specific situations or asking for educated opinions. To aid students further, discussions of many of the problems can be found at the end of the book.

Fourier Analysis and Its Applications

Author: Anders Vretblad
Publisher: Springer Science & Business Media
ISBN: 9780387217239
Release Date: 2006-04-18
Genre: Mathematics

A carefully prepared account of the basic ideas in Fourier analysis and its applications to the study of partial differential equations. The author succeeds to make his exposition accessible to readers with a limited background, for example, those not acquainted with the Lebesgue integral. Readers should be familiar with calculus, linear algebra, and complex numbers. At the same time, the author has managed to include discussions of more advanced topics such as the Gibbs phenomenon, distributions, Sturm-Liouville theory, Cesaro summability and multi-dimensional Fourier analysis, topics which one usually does not find in books at this level. A variety of worked examples and exercises will help the readers to apply their newly acquired knowledge.

Derivative with a New Parameter

Author: Abdon Atangana
Publisher: Academic Press
ISBN: 9780128038253
Release Date: 2015-09-18
Genre: Mathematics

Derivative with a New Parameter: Theory, Methods and Applications discusses the first application of the local derivative that was done by Newton for general physics, and later for other areas of the sciences. The book starts off by giving a history of derivatives, from Newton to Caputo. It then goes on to introduce the new parameters for the local derivative, including its definition and properties. Additional topics define beta-Laplace transforms, beta-Sumudu transforms, and beta-Fourier transforms, including their properties, and then go on to describe the method for partial differential with the beta derivatives. Subsequent sections give examples on how local derivatives with a new parameter can be used to model different applications, such as groundwater flow and different diseases. The book gives an introduction to the newly-established local derivative with new parameters, along with their integral transforms and applications, also including great examples on how it can be used in epidemiology and groundwater studies. Introduce the new parameters for the local derivative, including its definition and properties Provides examples on how local derivatives with a new parameter can be used to model different applications, such as groundwater flow and different diseases Includes definitions of beta-Laplace transforms, beta-Sumudu transforms, and beta-Fourier transforms, their properties, and methods for partial differential using beta derivatives Explains how the new parameter can be used in multiple methods

Handbook of Integral Equations

Author: Andrei D. Polyanin
Publisher: CRC Press
ISBN: 9781135436124
Release Date: 2008-02-12
Genre: Mathematics

Unparalleled in scope compared to the literature currently available, the Handbook of Integral Equations, Second Edition contains over 2,500 integral equations with solutions as well as analytical and numerical methods for solving linear and nonlinear equations. It explores Volterra, Fredholm, Wiener–Hopf, Hammerstein, Uryson, and other equations that arise in mathematics, physics, engineering, the sciences, and economics. With 300 additional pages, this edition covers much more material than its predecessor. New to the Second Edition • New material on Volterra, Fredholm, singular, hypersingular, dual, and nonlinear integral equations, integral transforms, and special functions • More than 400 new equations with exact solutions • New chapters on mixed multidimensional equations and methods of integral equations for ODEs and PDEs • Additional examples for illustrative purposes To accommodate different mathematical backgrounds, the authors avoid wherever possible the use of special terminology, outline some of the methods in a schematic, simplified manner, and arrange the material in increasing order of complexity. The book can be used as a database of test problems for numerical and approximate methods for solving linear and nonlinear integral equations.

A Student s Guide to Fourier Transforms

Author: J. F. James
Publisher: Cambridge University Press
ISBN: 9781139493949
Release Date: 2011-03-31
Genre: Science

Fourier transform theory is of central importance in a vast range of applications in physical science, engineering and applied mathematics. Providing a concise introduction to the theory and practice of Fourier transforms, this book is invaluable to students of physics, electrical and electronic engineering, and computer science. After a brief description of the basic ideas and theorems, the power of the technique is illustrated through applications in optics, spectroscopy, electronics and telecommunications. The rarely discussed but important field of multi-dimensional Fourier theory is covered, including a description of Computer Axial Tomography (CAT scanning). The book concludes by discussing digital methods, with particular attention to the Fast Fourier Transform and its implementation. This new edition has been revised to include new and interesting material, such as convolution with a sinusoid, coherence, the Michelson stellar interferometer and the van Cittert–Zernike theorem, Babinet's principle and dipole arrays.

Fourier Transforms

Author: Ian Naismith Sneddon
Publisher: Courier Corporation
ISBN: 0486685225
Release Date: 1995
Genre: Mathematics

Focusing on applications of Fourier transforms and related topics rather than theory, this accessible treatment is suitable for students and researchers interested in boundary value problems of physics and engineering. 1951 edition.

Integral Transforms and Their Applications

Author: Lokenath Debnath
Publisher: CRC Press
ISBN: 0849394589
Release Date: 1995-07-03
Genre: Mathematics

Integral Transforms and Their Applications, provides a systematic , comprehensive review of the properties of integral transforms and their applications to the solution of boundary and initial value problems. Over 750 worked examples, exercises, and applications illustrate how transform methods can be used to solve problems in applied mathematics, mathematical physics, and engineering. The specific applications discussed include problems in differential, integral, and difference equations; electric circuits and networks; vibrations and wave propagation; heat conduction; fractional derivatives and fractional integrals; dynamical systems; signal processing; quantum mechanics; atmosphere and ocean dynamics; physical chemistry; mathematical biology; and probability and statistics. Integral Transforms and Their Applications includes broad coverage the standard material on integral transforms and their applications, along with modern applications and examples of transform methods. It is both an ideal textbook for students and a sound reference for professionals interested in advanced study and research in the field.

The Fast Fourier Transform and Its Applications

Author: E. Oran Brigham
ISBN: UOM:39015047815561
Release Date: 1988
Genre: Mathematics

The Fast Fourier Transform (FFT) is a mathematical method widely used in signal processing. This book focuses on the application of the FFT in a variety of areas: Biomedical engineering, mechanical analysis, analysis of stock market data, geophysical analysis, and the conventional radar communications field.

Analytic Functions Integral Transforms Differential Equations

Author: Filippo Gazzola
Publisher: Società Editrice Esculapio
ISBN: 9788874885619
Release Date: 2015-09-15
Genre: Mathematics

Differential equations play a relevant role in many disciplines and provide powerful tools for analysis and modeling in applied sciences. The book contains several classical and modern methods for the study of ordinary and partial differential equations. A broad space is reserved to Fourier and Laplace transforms together with their applications to the solution of boundary value and/or initial value problems for differential equations. Basic prerequisites concerning analytic functions of complex variable and Lp spaces are synthetically presented in the first two chapters. Techniques based on integral transforms and Fourier series are presented in specific chapters, first in the easier framework of integrable functions and later in the general framework of distributions. The less elementary distributional context allows to deal also with differential equations with highly irregular data and pulse signals. The theory is introduced concisely, while learning of miscellaneous methods is achieved step-by-step through the proposal of many exercises of increasing difficulty. Additional recap exercises are collected in dedicated sections. Several tables for easy reference of main formulas are available at the end of the book. The presentation is oriented mainly to students of Schools in Engineering, Sciences and Economy. The partition of various topics in several self-contained and independent sections allows an easy splitting in at least two didactic modules: one at undergraduate level, the other at graduate level. This text is the English translation of the Third Edition of the Italian book “Analisi Complessa, Trasformate, Equazioni Differenziali" published by Esculapio in 2015.

An Introduction to Laplace Transforms and Fourier Series

Author: Phil Dyke
Publisher: Springer Science & Business Media
ISBN: 1852330155
Release Date: 2000-10-27
Genre: Mathematics

This introduction to Laplace transforms and Fourier series is aimed at second year students in applied mathematics. It is unusual in treating Laplace transforms at a relatively simple level with many examples. Mathematics students do not usually meet this material until later in their degree course but applied mathematicians and engineers need an early introduction. Suitable as a course text, it will also be of interest to physicists and engineers as supplementary material.

Mathematics for Physical Chemistry

Author: Robert G. Mortimer
Publisher: Academic Press
ISBN: 9780123978455
Release Date: 2013-06-07
Genre: Science

Mathematics for Physical Chemistry is the ideal supplementary text for practicing chemists and students who want to sharpen their mathematics skills while enrolled in general through physical chemistry courses. This book specifically emphasizes the use of mathematics in the context of physical chemistry, as opposed to being simply a mathematics text. This 4e includes new exercises in each chapter that provide practice in a technique immediately after discussion or example and encourage self-study. The early chapters are constructed around a sequence of mathematical topics, with a gradual progression into more advanced material. A final chapter discusses mathematical topics needed in the analysis of experimental data. Numerous examples and problems interspersed throughout the presentations Each extensive chapter contains a preview and objectives Includes topics not found in similar books, such as a review of general algebra and an introduction to group theory Provides chemistry-specific instruction without the distraction of abstract concepts or theoretical issues in pure mathematics

Linear Partial Differential Equations for Scientists and Engineers

Author: Tyn Myint-U
Publisher: Springer Science & Business Media
ISBN: 0817645608
Release Date: 2007-04-05
Genre: Mathematics

This significantly expanded fourth edition is designed as an introduction to the theory and applications of linear PDEs. The authors provide fundamental concepts, underlying principles, a wide range of applications, and various methods of solutions to PDEs. In addition to essential standard material on the subject, the book contains new material that is not usually covered in similar texts and reference books. It also contains a large number of worked examples and exercises dealing with problems in fluid mechanics, gas dynamics, optics, plasma physics, elasticity, biology, and chemistry; solutions are provided.