Integration II

Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 9783662079317
Release Date: 2013-06-29
Genre: Mathematics

Integration is the sixth and last of the books that form the core of the Bourbaki series; it draws abundantly on the preceding five Books, especially General Topology and Topological Vector Spaces, making it a culmination of the core six. The power of the tool thus fashioned is strikingly displayed in Chapter II of the author's Théories Spectrales, an exposition, in a mere 38 pages, of abstract harmonic analysis and the structure of locally compact abelian groups. The first volume of the English translation comprises Chapters 1-6; the present volume completes the translation with the remaining Chapters 7-9. Chapters 1-5 received very substantial revisions in a second edition, including changes to some fundamental definitions. Chapters 6-8 are based on the first editions of Chapters 1-5. The English edition has given the author the opportunity to correct misprints, update references, clarify the concordance of Chapter 6 with the second editions of Chapters 1-5, and revise the definition of a key concept in Chapter 6 (measurable equivalence relations).

A Course on Integration Theory

Author: Nicolas Lerner
Publisher: Springer
ISBN: 9783034806947
Release Date: 2014-07-09
Genre: Mathematics

This textbook provides a detailed treatment of abstract integration theory, construction of the Lebesgue measure via the Riesz-Markov Theorem and also via the Carathéodory Theorem. It also includes some elementary properties of Hausdorff measures as well as the basic properties of spaces of integrable functions and standard theorems on integrals depending on a parameter. Integration on a product space, change of variables formulas as well as the construction and study of classical Cantor sets are treated in detail. Classical convolution inequalities, such as Young's inequality and Hardy-Littlewood-Sobolev inequality are proven. The Radon-Nikodym theorem, notions of harmonic analysis, classical inequalities and interpolation theorems, including Marcinkiewicz's theorem, the definition of Lebesgue points and Lebesgue differentiation theorem are further topics included. A detailed appendix provides the reader with various elements of elementary mathematics, such as a discussion around the calculation of antiderivatives or the Gamma function. The appendix also provides more advanced material such as some basic properties of cardinals and ordinals which are useful in the study of measurability.​

Real Analysis A Comprehensive Course in Analysis Part 1

Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 9781470410995
Release Date: 2015-11-02
Genre: Mathematical analysis

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 1 is devoted to real analysis. From one point of view, it presents the infinitesimal calculus of the twentieth century with the ultimate integral calculus (measure theory) and the ultimate differential calculus (distribution theory). From another, it shows the triumph of abstract spaces: topological spaces, Banach and Hilbert spaces, measure spaces, Riesz spaces, Polish spaces, locally convex spaces, Fréchet spaces, Schwartz space, and spaces. Finally it is the study of big techniques, including the Fourier series and transform, dual spaces, the Baire category, fixed point theorems, probability ideas, and Hausdorff dimension. Applications include the constructions of nowhere differentiable functions, Brownian motion, space-filling curves, solutions of the moment problem, Haar measure, and equilibrium measures in potential theory.

Tensor Valued Random Fields for Continuum Physics

Author: Anatoliy Malyarenko
Publisher: Cambridge University Press
ISBN: 9781108627818
Release Date: 2019-01-31
Genre: Science

Many areas of continuum physics pose a challenge to physicists. What are the most general, admissible statistically homogeneous and isotropic tensor-valued random fields (TRFs)? Previously, only the TRFs of rank 0 were completely described. This book assembles a complete description of such fields in terms of one- and two-point correlation functions for tensors of ranks 1 through 4. Working from the standpoint of invariance of physical laws with respect to the choice of a coordinate system, spatial domain representations, as well as their wavenumber domain counterparts are rigorously given in full detail. The book also discusses, an introduction to a range of continuum theories requiring TRFs, an introduction to mathematical theories necessary for the description of homogeneous and isotropic TRFs, and a range of applications including a strategy for simulation of TRFs, ergodic TRFs, scaling laws of stochastic constitutive responses, and applications to stochastic partial differential equations. It is invaluable for mathematicians looking to solve problems of continuum physics, and for physicists aiming to enrich their knowledge of the relevant mathematical tools.

Integration I

Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 9783642593123
Release Date: 2013-12-01
Genre: Mathematics

This is the sixth and last of the books that form the core of the Bourbaki series, comprising chapters 1-6 in English translation. One striking feature is its exposition of abstract harmonic analysis and the structure of locally compact Abelian groups. This English edition corrects misprints, updates references, and revises the definition of the concept of measurable equivalence relations.

Lie Groups and Lie Algebras

Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 354068851X
Release Date: 2008-09-30
Genre: Computers

This is the soft cover reprint of the English translation of Bourbaki's text Groupes et Algèbres de Lie, Chapters 7 to 9. It covers the structure and representation theory of semi-simple Lie algebras and compact Lie groups.

Newsletter

Author: New Zealand Mathematical Society
Publisher:
ISBN: UOM:39015060913897
Release Date: 2004
Genre: Mathematics


Algebra II

Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 3540007067
Release Date: 2003-04-16
Genre: Mathematics

This is a softcover reprint of chapters four through seven of the 1990 English translation of the revised and expanded version of Bourbaki’s Algebre. Much material was added or revised for this edition, which thoroughly establishes the theories of commutative fields and modules over a principal ideal domain.

Commutative Algebra

Author: N. Bourbaki
Publisher: Springer Science & Business Media
ISBN: 3540642390
Release Date: 1998-08-03
Genre: Mathematics

This is the softcover reprint of the English translation of 1972 (available from Springer since 1989) of the first 7 chapters of Bourbaki's 'Algèbre commutative'. It provides a very complete treatment of commutative algebra, enabling the reader to go further and study algebraic or arithmetic geometry. The first 3 chapters treat in succession the concepts of flatness, localization and completions (in the general setting of graduations and filtrations). Chapter 4 studies associated prime ideals and the primary decomposition. Chapter 5 deals with integers, integral closures and finitely generated algebras over a field (including the Nullstellensatz). Chapter 6 studies valuation (of any rank), and the last chapter focuses on divisors (Krull, Dedekind, or factorial domains) with a final section on modules over integrally closed Noetherian domains, not usually found in textbooks. Useful exercises appear at the ends of the chapters.

Elements of Real Analysis

Author: M.A. Al-Gwaiz
Publisher: CRC Press
ISBN: 9781420011609
Release Date: 2006-08-21
Genre: Mathematics

Focusing on one of the main pillars of mathematics, Elements of Real Analysis provides a solid foundation in analysis, stressing the importance of two elements. The first building block comprises analytical skills and structures needed for handling the basic notions of limits and continuity in a simple concrete setting while the second component involves conducting analysis in higher dimensions and more abstract spaces. Largely self-contained, the book begins with the fundamental axioms of the real number system and gradually develops the core of real analysis. The first few chapters present the essentials needed for analysis, including the concepts of sets, relations, and functions. The following chapters cover the theory of calculus on the real line, exploring limits, convergence tests, several functions such as monotonic and continuous, power series, and theorems like mean value, Taylor's, and Darboux's. The final chapters focus on more advanced theory, in particular, the Lebesgue theory of measure and integration. Requiring only basic knowledge of elementary calculus, this textbook presents the necessary material for a first course in real analysis. Developed by experts who teach such courses, it is ideal for undergraduate students in mathematics and related disciplines, such as engineering, statistics, computer science, and physics, to understand the foundations of real analysis.

Evolution Processes and the Feynman Kac Formula

Author: Brian Jefferies
Publisher: Springer Science & Business Media
ISBN: 079233843X
Release Date: 1996
Genre: Mathematics

The evolution of a physical system can often be described in terms of a semigroup of linear operators. Observations of the system may be modelled by a spectral measure. A combination of these basic objects produces a family of operator valued set functions, by which perturbations of the evolution are represented as path integrals. In this book, random processes measured by operator valued set functions - evolution processes - are systematically examined for the first time. The Feynman-Kac formula, representing perturbations of the heat semigroup in terms of integrals with respect to Wiener measure, is extended in a number of directions: to other countably additive processes, not necessarily associated with a probability measure; to unbounded processes such as those associated with Feynman integrals; and to random evolutions. Audience: Researchers in mathematical physics, functional analysis and stochastic processes.