Introduction to Boolean Algebras

Author: Steven Givant
Publisher: Springer Science & Business Media
ISBN: 9780387402932
Release Date: 2008-12-02
Genre: Mathematics

This book is an informal though systematic series of lectures on Boolean algebras. It contains background chapters on topology and continuous functions and includes hundreds of exercises as well as a solutions manual.

Duality Theories for Boolean Algebras with Operators

Author: Steven Givant
Publisher: Springer
ISBN: 9783319067438
Release Date: 2014-07-18
Genre: Mathematics

In this new text, Steven Givant—the author of several acclaimed books, including works co-authored with Paul Halmos and Alfred Tarski—develops three theories of duality for Boolean algebras with operators. Givant addresses the two most recognized dualities (one algebraic and the other topological) and introduces a third duality, best understood as a hybrid of the first two. This text will be of interest to graduate students and researchers in the fields of mathematics, computer science, logic, and philosophy who are interested in exploring special or general classes of Boolean algebras with operators. Readers should be familiar with the basic arithmetic and theory of Boolean algebras, as well as the fundamentals of point-set topology.

Introduction to Relation Algebras

Author: Steven Givant
Publisher: Springer
ISBN: 9783319652351
Release Date: 2017-08-29
Genre: Mathematics

The first volume of a pair that charts relation algebras from novice to expert level, this text offers a comprehensive grounding for readers new to the topic. Upon completing this introduction, mathematics students may delve into areas of active research by progressing to the second volume, Advanced Topics in Relation Algebras; computer scientists, philosophers, and beyond will be equipped to apply these tools in their own field. The careful presentation establishes first the arithmetic of relation algebras, providing ample motivation and examples, then proceeds primarily on the basis of algebraic constructions: subalgebras, homomorphisms, quotient algebras, and direct products. Each chapter ends with a historical section and a substantial number of exercises. The only formal prerequisite is a background in abstract algebra and some mathematical maturity, though the reader will also benefit from familiarity with Boolean algebra and naïve set theory. The measured pace and outstanding clarity are particularly suited to independent study, and provide an unparalleled opportunity to learn from one of the leading authorities in the field. Collecting, curating, and illuminating over 75 years of progress since Tarski's seminal work in 1941, this textbook in two volumes offers a landmark, unified treatment of the increasingly relevant field of relation algebras. Clear and insightful prose guides the reader through material previously only available in scattered, highly-technical journal articles. Students and experts alike will appreciate the work as both a textbook and invaluable reference for the community.

Advanced Topics in Relation Algebras

Author: Steven Givant
Publisher: Springer
ISBN: 9783319659459
Release Date: 2017-08-29
Genre: Mathematics

The second volume of a pair that charts relation algebras from novice to expert level, this text brings the well-grounded reader to the frontiers of research. Building on the foundations established in the preceding Introduction to Relation Algebras, this volume advances the reader into the deeper mathematical results of the past few decades. Such material offers an ideal preparation for research in relation algebras and Boolean algebras with operators. Arranged in a modular fashion, this text offers the opportunity to explore any of several areas in detail; topics include canonical extensions, completions, representations, varieties, and atom structures. Each chapter offers a complete account of one such avenue of development, including a historical section and substantial number of exercises. The clarity of exposition and comprehensive nature of each module make this an ideal text for the independent reader entering the field, while researchers will value it as a reference for years to come. Collecting, curating, and illuminating over 75 years of progress since Tarski's seminal work in 1941, this textbook in two volumes offers a landmark, unified treatment of the increasingly relevant field of relation algebras. Clear and insightful prose guides the reader through material previously only available in scattered, highly-technical journal articles. Students and experts alike will appreciate the work as both a textbook and invaluable reference for the community. Note that this volume contains numerous, essential references to the previous volume, Introduction to Relation Algebras. The reader is strongly encouraged to secure at least electronic access to the first book in order to make use of the second.

A Beginner s Guide to Discrete Mathematics

Author: W. D. Wallis
Publisher: Springer Science & Business Media
ISBN: 0817642692
Release Date: 2003
Genre: Mathematics

This introduction to discrete mathematics is aimed at freshmen and sophomores in mathematics and computer science. It begins with a survey of number systems and elementary set theory before moving on to treat data structures, counting, probability, relations and functions, graph theory, matrices, number theory and cryptography. The end of each section contains problem sets with selected solutions, and good examples occur throughout the text.

Lectures on Boolean Algebras

Author: Paul R. Halmos
Publisher: Courier Dover Publications
ISBN: 9780486828046
Release Date: 2018-09-12
Genre: Mathematics

Concise and informal as well as systematic, this presentation on the basics of Boolean algebra has ranked among the fundamental books on the subject since its initial publication in 1963.

Diskrete Mathematik

Author: Martin Aigner
Publisher: Springer-Verlag
ISBN: 9783322854964
Release Date: 2013-04-17
Genre: Mathematics

Vor 50 Jahren gab es den Begriff "Diskrete Mathematik" nicht, und er ist auch heute im deutschen Sprachraum keineswegs gebrauchlich. Vorlesungen dazu werden nicht iiberall und schon gar nicht mit einem einheitlichen Themenkatalog angeboten (im Gegensatz zum Beispiel zu den USA, wo sie seit langem einen festen Platz haben). Die Mathematiker verstehen unter Diskreter Mathematik meist Kombinatorik oder Graphentheorie, die Informatiker Diskrete Strukturen oder Boolesche Algebren. Das Hauptanliegen dieses Buches ist daher, solch einen Themenkatalog zu prasentieren, der alle Grundlagen fiir ein weiterfiihrendes Studium enthalt. Die Diskrete Mathematik beschaftigt sich vor allem mit endlichen Mengen. Was kann man in endlichen Mengen studieren? Ais allererstes kann man sie abzahlen, dies ist das klassische Thema der Kombinatorik - in Teil I werden wir die wich tigsten Ideen und Methoden zur Abzahlung kennenlernen. Auf endlichen Mengen ist je nach Aufgabenstellung meist eine einfache Struktur in Form von Relationen gegeben, von denen die anwendungsreichsten die Graphen sind. Diese Aspekte fas sen wir in Teil II unter dem Titel Graphen uncl Algorithmen zusammen. Und schlieBlich existiert auf endlichen Mengen oft eine algebraische Struktur (oder man kann eine solche auf natiirliche Weise erklaren). Algebraische Systeme sind der Inhalt von Teil III. Diese drei Gesichtspunkte bilden den roten Faden des Buches. Ein weiterer Aspekt, der die Darstellung durchgehend pragt, betrifft den Begriff der Optimierung.

Introduction to Lattices and Order

Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 0521784514
Release Date: 2002-04-18
Genre: Mathematics

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Liebe und Mathematik

Author: Edward Frenkel
Publisher: Springer-Verlag
ISBN: 9783662434215
Release Date: 2014-11-17
Genre: Mathematics


Modern Algebra with Applications

Author: William J. Gilbert
Publisher: John Wiley & Sons
ISBN: 9780471469896
Release Date: 2004-01-30
Genre: Mathematics

Praise for the first edition "This book is clearly written and presents a large number ofexamples illustrating the theory . . . there is no other book ofcomparable content available. Because of its detailed coverage ofapplications generally neglected in the literature, it is adesirable if not essential addition to undergraduate mathematicsand computer science libraries." –CHOICE As a cornerstone of mathematical science, the importance ofmodern algebra and discrete structures to many areas of science andtechnology is apparent and growing–with extensive use incomputing science, physics, chemistry, and data communications aswell as in areas of mathematics such as combinatorics. Blending the theoretical with the practical in the instructionof modern algebra, Modern Algebra with Applications, Second Editionprovides interesting and important applications of thissubject–effectively holding your interest and creating a moreseamless method of instruction. Incorporating the applications of modern algebra throughout itsauthoritative treatment of the subject, this book covers the fullcomplement of group, ring, and field theory typically contained ina standard modern algebra course. Numerous examples are included ineach chapter, and answers to odd-numbered exercises are appended inthe back of the text. Chapter topics include: Boolean Algebras Polynomial and Euclidean Rings Groups Quotient Rings Quotient Groups Field Extensions Symmetry Groups in Three Dimensions Latin Squares Pólya—Burnside Method of Enumeration Geometrical Constructions Monoids and Machines Error-Correcting Codes Rings and Fields In addition to improvements in exposition, this fully updatedSecond Edition also contains new material on order of an elementand cyclic groups, more details about the lattice of divisors of aninteger, and new historical notes. Filled with in-depth insights and over 600 exercises of varyingdifficulty, Modern Algebra with Applications, Second Edition canhelp anyone appreciate and understand this subject.