Introduction to General Relativity

Author: John Dirk Walecka
Publisher: World Scientific Publishing Company
ISBN: 9789813227712
Release Date: 2017-06-16
Genre:

It is important for every physicist today to have a working knowledge of Einstein's theory of general relativity. Introduction to General Relativity published in 2007 was aimed at first-year graduate students, or advanced undergraduates, in physics. Only a basic understanding of classical lagrangian mechanics is assumed; beyond that, the reader should find the material to be self-contained. The mechanics problem of a point mass constrained to move without friction on a two-dimensional surface of arbitrary shape serves as a paradigm for the development of the mathematics and physics of general relativity. Special relativity is reviewed. The basic principles of general relativity are then presented, and the most important applications are discussed. The final special topics section takes the reader up to a few areas of current research. An extensive set of accessible problems enhances and extends the coverage. As a learning and teaching tool, this current book provides solutions to those problems. This text and solutions manual are meant to provide an introduction to the subject. It is hoped that these books will allow the reader to approach the more advanced texts and monographs, as well as the continual influx of fascinating new experimental results, with a deeper understanding and sense of appreciation.

Introduction to General Relativity

Author: Lewis Ryder
Publisher: Cambridge University Press
ISBN: 9780521845632
Release Date: 2009-06-11
Genre: Science

Student-friendly, well illustrated textbook for advanced undergraduate and beginning graduate students in physics and mathematics.

An Introduction to General Relativity

Author: L. P. Hughston
Publisher: Cambridge University Press
ISBN: 052133943X
Release Date: 1990
Genre: Mathematics

This textbook provides an introduction to general relativity for mathematics undergraduates or graduate physicists. After a review of Cartesian tensor notation and special relativity the concepts of Riemannian differential geometry are introducted. More emphasis is placed on an intuitive grasp of the subject and a calculational facility than on a rigorous mathematical exposition. General relativity is then presented as a relativistic theory of gravity reducing in the appropriate limits to Newtonian gravity or special relativity. The Schwarzchild solution is derived and the gravitational red-shift, time dilation and classic tests of general relativity are discussed. There is a brief account of gravitational collapse and black holes based on the extended Schwarzchild solution. Other vacuum solutions are described, motivated by their counterparts in linearised general relativity. The book ends with chapters on cosmological solutions to the field equations. There are exercises attached to each chapter, some of which extend the development given in the text.

An Introduction to General Relativity and Cosmology

Author: Jerzy Plebanski
Publisher: Cambridge University Press
ISBN: 9781139458405
Release Date: 2006-08-14
Genre: Science

General relativity is a cornerstone of modern physics, and is of major importance in its applications to cosmology. Plebanski and Krasinski are experts in the field and in this book they provide a thorough introduction to general relativity, guiding the reader through complete derivations of the most important results. Providing coverage from a unique viewpoint, geometrical, physical and astrophysical properties of inhomogeneous cosmological models are all systematically and clearly presented, allowing the reader to follow and verify all derivations. For advanced undergraduates and graduates in physics and astronomy, this textbook will enable students to develop expertise in the mathematical techniques necessary to study general relativity.

Introduction to General Relativity Black Holes and Cosmology

Author: Yvonne Choquet-Bruhat
Publisher: Oxford University Press, USA
ISBN: 9780199666461
Release Date: 2015-01-21
Genre: Science

General Relativity is a beautiful geometric theory, simple in its mathematical formulation but leading to numerous consequences with striking physical interpretations: gravitational waves, black holes, cosmological models, and so on. This introductory textbook is written for mathematics students interested in physics and physics students interested in exact mathematical formulations (or for anyone with a scientific mind who is curious to know more of the world we live in), recent remarkable experimental and observational results which confirm the theory are clearly described and no specialised physics knowledge is required. The mathematical level of Part A is aimed at undergraduate students and could be the basis for a course on General Relativity. Part B is more advanced, but still does not require sophisticated mathematics. Based on Yvonne Choquet-Bruhat's more advanced text, General Relativity and the Einstein Equations, the aim of this book is to give with precision, but as simply as possible, the foundations and main consequences of General Relativity. The first five chapters from General Relativity and the Einstein Equations have been updated with new sections and chapters on black holes, gravitational waves, singularities, and the Reissner-Nordstrom and interior Schwarzchild solutions. The rigour behind this book will provide readers with the perfect preparation to follow the great mathematical progress in the actual development, as well as the ability to model, the latest astrophysical and cosmological observations. The book presents basic General Relativity and provides a basis for understanding and using the fundamental theory.

General Relativity

Author: M. P. Hobson
Publisher: Cambridge University Press
ISBN: 9781139447546
Release Date: 2006-02-02
Genre: Science

General Relativity: An Introduction for Physicists provides a clear mathematical introduction to Einstein's theory of general relativity. It presents a wide range of applications of the theory, concentrating on its physical consequences. After reviewing the basic concepts, the authors present a clear and intuitive discussion of the mathematical background, including the necessary tools of tensor calculus and differential geometry. These tools are then used to develop the topic of special relativity and to discuss electromagnetism in Minkowski spacetime. Gravitation as spacetime curvature is then introduced and the field equations of general relativity derived. After applying the theory to a wide range of physical situations, the book concludes with a brief discussion of classical field theory and the derivation of general relativity from a variational principle. Written for advanced undergraduate and graduate students, this approachable textbook contains over 300 exercises to illuminate and extend the discussion in the text.

Introduction to General Relativity and Cosmology

Author: Christian G Böhmer
Publisher: World Scientific Publishing Company
ISBN: 9781786341204
Release Date: 2016-10-06
Genre: Science

Introduction to General Relativity and Cosmology gives undergraduate students an overview of the fundamental ideas behind the geometric theory of gravitation and spacetime. Through pointers on how to modify and generalise Einstein's theory to enhance understanding, it provides a link between standard textbook content and current research in the field. Chapters present complicated material practically and concisely, initially dealing with the mathematical foundations of the theory of relativity, in particular differential geometry. This is followed by a discussion of the Einstein field equations and their various properties. Also given is analysis of the important Schwarzschild solutions, followed by application of general relativity to cosmology. Questions with fully worked answers are provided at the end of each chapter to aid comprehension and guide learning. This pared down textbook is specifically designed for new students looking for a workable, simple presentation of some of the key theories in modern physics and mathematics. Request Inspection Copy

Introduction to General Relativity

Author: G. 't Hooft
Publisher: Rinton PressInc
ISBN: STANFORD:36105025213856
Release Date: 2001-01-01
Genre: Science

A presentation of general relativity as a scheme for describing the gravitational field and the equations it obeys. Starting from physical motivations, curved co-ordinates are introduced, and then the notion of an affine connection field is added. At a later step, the metric field is added.

Spacetime and Geometry

Author: Sean Carroll
Publisher:
ISBN: 1292026634
Release Date: 2013-08
Genre: Science

Spacetime and Geometry: An Introduction to General Relativity provides a lucid and thoroughly modern introduction to general relativity for advanced undergraduates and graduate students. It introduces modern techniques and an accessible and lively writing style to what can often be a formal and intimidating subject. Readers are led from physics of flat spacetime (special relativity), through the intricacies of differential geometry and Einstein's equations, and on to exciting applications such as black holes, gravitational radiation, and cosmology. Subtle points are illuminated throughout the text by careful and entertaining exposition. A straightforward and lucid approach, balancing mathematical rigor and physical insight, are hallmarks of this important text.

Introduction to General Relativity and the Cosmological Constant Problem

Author: Marcelo Samuel Berman
Publisher: Nova Publishers
ISBN: 1594547173
Release Date: 2007
Genre: Science

This book is an introductory text in General Relativity, while also focusing some solutions to the cosmological constant problem, which consists in an amazing 100 orders of magnitude discrepancy between the value of this constant in the present Universe, and its estimated value in the very early epoch. The author suggests that the constant is in fact, a time-varying function of the age of the Universe. The book offers a wealth of cosmological models, treats up to date findings, like the verification of the Lense-Thirring effect in the year 2004, and the recently published research by Cooperstock and Tieu (2005) suggesting that "dark" matter is not a necessary concept in order to explain the rotational velocities of stars around galaxies' nuclei. This is a mathematical cosmology textbook that may lead undergraduates, and graduate students to one of the frontiers of research, while keeping the prerequisites to a minimum, because most of the theory in the book requires only prior knowledge of Calculus and a University Physics course.

Introduction to General Relativity

Author: H. A. Atwater
Publisher: Elsevier
ISBN: 9781483160429
Release Date: 2013-10-22
Genre: Science

Introduction to General Relativity is an introductory text on the concepts and modes of calculation used in general relativity. Topics covered range from Newton's laws of motion and the Galilean transformation to tensor analysis, equations of motion of free particles, electromagnetism, and gravitational fields and waves. Solutions of the field equations are also given. The emphasis is on the actual performance of relativistic calculations, rather than on mathematical rigor or exhaustive completeness. This volume is comprised of nine chapters and begins with an overview of the theory of relativity, which includes special relativity and general relativity. The discussion then turns to Newton's laws of motion and the Galilean transformation, electromagnetism and the Galilean transformation, and the Lorentz transformation. Subsequent chapters explore tensor analysis; equations of motion of free particles; gravitational fields and waves; relativity in cosmology; and unified theories and quantized theories of general relativity. The final chapter is devoted to Minkowski's coordinates and orthogonal transformations. This book will be a valuable resource for students of physics.

Exploring Black Holes

Author: Edwin F. Taylor
Publisher:
ISBN: 0321512863
Release Date: 2010
Genre: Science

This unique book offers a concise, introductory overview of general relativity and black holes, motivating students to become active participants in carrying out their own investigations. To this end, the book uses calculus and algebra, rather than tensors, to make general relativity accessible to sophomores and juniors. Five chapters introduce basic concepts, and seven projects require the reader to apply these basic concepts to real astronomical applications.