Modern Classical Homotopy Theory

Author: Jeffrey Strom
Publisher: American Mathematical Soc.
ISBN: 9780821852866
Release Date: 2011-10-19
Genre: Mathematics

The core of classical homotopy theory is a body of ideas and theorems that emerged in the 1950s and was later largely codified in the notion of a model category. This core includes the notions of fibration and cofibration; CW complexes; long fiber and cofiber sequences; loop spaces and suspensions; and so on. Brown's representability theorems show that homology and cohomology are also contained in classical homotopy theory. This text develops classical homotopy theory from a modern point of view, meaning that the exposition is informed by the theory of model categories and that homotopy limits and colimits play central roles. The exposition is guided by the principle that it is generally preferable to prove topological results using topology (rather than algebra). The language and basic theory of homotopy limits and colimits make it possible to penetrate deep into the subject with just the rudiments of algebra. The text does reach advanced territory, including the Steenrod algebra, Bott periodicity, localization, the Exponent Theorem of Cohen, Moore, and Neisendorfer, and Miller's Theorem on the Sullivan Conjecture. Thus the reader is given the tools needed to understand and participate in research at (part of) the current frontier of homotopy theory. Proofs are not provided outright. Rather, they are presented in the form of directed problem sets. To the expert, these read as terse proofs; to novices they are challenges that draw them in and help them to thoroughly understand the arguments.

Introduction to Homotopy Theory

Author: Paul Selick
Publisher: American Mathematical Soc.
ISBN: 0821844369
Release Date: 2008
Genre: Mathematics

This text is based on a one-semester graduate course taught by the author at The Fields Institute in fall 1995 as part of the homotopy theory program which constituted the Institute's major program that year. The intent of the course was to bring graduate students who had completed a first course in algebraic topology to the point where they could understand research lectures in homotopy theory and to prepare them for the other, more specialized graduate courses being held in conjunction with the program. The notes are divided into two parts: prerequisites and the course proper. Part I, the prerequisites, contains a review of material often taught in a first course in algebraic topology. It should provide a useful summary for students and non-specialists who are interested in learning the basics of algebraic topology. Included are some basic category theory, point set topology, the fundamental group, homological algebra, singular and cellular homology, and Poincare duality. Part II covers fibrations and cofibrations, Hurewicz and cellular approximation theorems, topics in classical homotopy theory, simplicial sets, fiber bundles, Hopf algebras, spectral sequences, localization, generalized homology and cohomology operations. This book collects in one place the material that a researcher in algebraic topology must know. The author has attempted to make this text a self-contained exposition. Precise statements and proofs are given of ``folk'' theorems which are difficult to find or do not exist in the literature.

Toric Topology

Author: Megumi Harada
Publisher: American Mathematical Soc.
ISBN: 9780821844861
Release Date: 2008
Genre: Mathematics

Toric topology is the study of algebraic, differential, symplectic-geometric, combinatorial, and homotopy-theoretic aspects of a particular class of torus actions whose quotients are highly structured. The combinatorial properties of this quotient and the equivariant topology of the original manifold interact in a rich variety of ways, thus illuminating subtle aspects of both the combinatorics and the equivariant topology. Many of the motivations and guiding principles of the field are provided by (though not limited to) the theory of toric varieties in algebraic geometry as well as that of symplectic toric manifolds in symplectic geometry. This volume is the proceedings of the International Conference on Toric Topology held in Osaka in May-June 2006. It contains about 25 research and survey articles written by conference speakers, covering many different aspects of, and approaches to, torus actions, such as those mentioned above.Some of the manuscripts are survey articles, intended to give a broad overview of an aspect of the subject; all manuscripts consciously aim to be accessible to a broad reading audience of students and researchers interested in the interaction of the subjects involved. We hope that this volume serves as an enticing invitation to this emerging field.

An SO 3 Monopole Cobordism Formula Relating Donaldson and Seiberg Witten Invariants

Author: Paul Feehan
Publisher: American Mathematical Soc.
ISBN: 9781470414214
Release Date: 2019-01-08
Genre: Cobordism theory

The authors prove an analogue of the Kotschick–Morgan Conjecture in the context of monopoles, obtaining a formula relating the Donaldson and Seiberg–Witten invariants of smooth four-manifolds using the -monopole cobordism. The main technical difficulty in the -monopole program relating the Seiberg–Witten and Donaldson invariants has been to compute intersection pairings on links of strata of reducible monopoles, namely the moduli spaces of Seiberg–Witten monopoles lying in lower-level strata of the Uhlenbeck compactification of the moduli space of monopoles. In this monograph, the authors prove—modulo a gluing theorem which is an extension of their earlier work—that these intersection pairings can be expressed in terms of topological data and Seiberg–Witten invariants of the four-manifold. Their proofs that the -monopole cobordism yields both the Superconformal Simple Type Conjecture of Moore, Mariño, and Peradze and Witten's Conjecture in full generality for all closed, oriented, smooth four-manifolds with and odd appear in earlier works.

Algebraic Topology

Author: Tammo tom Dieck
Publisher: European Mathematical Society
ISBN: 3037190485
Release Date: 2008-01-01
Genre: Mathematics

This book is written as a textbook on algebraic topology. Prerequisites are standard point set topology (as recalled in the first chapter), elementary algebraic notions (modules, tensor product), and some terminology from category theory. The aim of the book is to introduce advanced undergraduate and graduate (masters) students to basic tools, concepts and results of algebraic topology. Sufficient background material from geometry and algebra is included.

Homotopy of Operads and Grothendieck Teichmuller Groups

Author: Benoit Fresse
Publisher: American Mathematical Soc.
ISBN: 9781470434816
Release Date: 2017-04-21
Genre: Algebraic topology -- Homotopy theory -- Rational homotopy theory

The Grothendieck–Teichmüller group was defined by Drinfeld in quantum group theory with insights coming from the Grothendieck program in Galois theory. The ultimate goal of this book is to explain that this group has a topological interpretation as a group of homotopy automorphisms associated to the operad of little 2-discs, which is an object used to model commutative homotopy structures in topology. This volume gives a comprehensive survey on the algebraic aspects of this subject. The book explains the definition of an operad in a general context, reviews the definition of the little discs operads, and explains the definition of the Grothendieck–Teichmüller group from the viewpoint of the theory of operads. In the course of this study, the relationship between the little discs operads and the definition of universal operations associated to braided monoidal category structures is explained. Also provided is a comprehensive and self-contained survey of the applications of Hopf algebras to the definition of a rationalization process, the Malcev completion, for groups and groupoids. Most definitions are carefully reviewed in the book; it requires minimal prerequisites to be accessible to a broad readership of graduate students and researchers interested in the applications of operads.

C algebras by Example

Author: Kenneth R. Davidson
Publisher: American Mathematical Soc.
ISBN: 0821871897
Release Date: 1996
Genre: Mathematics

The subject of C*-algebras received a dramatic revitalization in the 1970s by the introduction of topological methods through the work of Brown, Douglas, and Fillmore on extensions of C*-algebras and Elliott's use of K-theory to provide a useful classification of AF algebras. These results were the beginning of a marvelous new set of tools for analyzing concrete C*-algebras. This book is an introductory graduate level text which presents the basics of the subject through a detailed analysis of several important classes of C*-algebras. The development of operator algebras in the last twenty years has been based on a careful study of these special classes. While there are many books on C*-algebras and operator algebras available, this is the first one to attempt to explain the real examples that researchers use to test their hypotheses. Topic include AF algebras, Bunce-Deddens and Cuntz algebras, the Toeplitz algebra, irrational rotation algebras, group C*-algebras, discrete crossed products, abelian C*-algebras (spectral theory and approximate unitary equivalence) and extensions. It also introduces many modern concepts and results in the subject such as real rank zero algebras, topological stable rank, quasidiagonality, and various new constructions. These notes were compiled during the author's participation in the special year on C*-algebras at the Fields Institute of Mathematics during the 1994-1995 academic year. The field of C*-algebras touches upon many other areas of mathematics such as group representations, dynamical systems, physics, K-theory, and topology. The variety of examples offered in this text expose the student to many of these connections. A graduate student with a solid course in functional analysis should be able to read this book. This should prepare them to read much of the current literature. This book is reasonably self-contained, and the author has provided results from other areas when necessary.

Tensor Categories

Author: Pavel Etingof
Publisher: American Mathematical Soc.
ISBN: 9781470420246
Release Date: 2015-07-22
Genre: Algebraic topology

Is there a vector space whose dimension is the golden ratio? Of course not--the golden ratio is not an integer! But this can happen for generalizations of vector spaces--objects of a tensor category. The theory of tensor categories is a relatively new field of mathematics that generalizes the theory of group representations. It has deep connections with many other fields, including representation theory, Hopf algebras, operator algebras, low-dimensional topology (in particular, knot theory), homotopy theory, quantum mechanics and field theory, quantum computation, theory of motives, etc. This book gives a systematic introduction to this theory and a review of its applications. While giving a detailed overview of general tensor categories, it focuses especially on the theory of finite tensor categories and fusion categories (in particular, braided and modular ones), and discusses the main results about them with proofs. In particular, it shows how the main properties of finite-dimensional Hopf algebras may be derived from the theory of tensor categories. Many important results are presented as a sequence of exercises, which makes the book valuable for students and suitable for graduate courses. Many applications, connections to other areas, additional results, and references are discussed at the end of each chapter.

Books in Series

Author:
Publisher:
ISBN: UOM:39015021462695
Release Date: 1985
Genre: Monographic series