Introduction to Lattices and Order

Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 0521784514
Release Date: 2002-04-18
Genre: Mathematics

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Introduction to Lattices and Order

Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 9781107717527
Release Date: 2002-04-18
Genre: Mathematics

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Introduction to Lattices and Order

Author: B. A. Davey
Publisher:
ISBN: 0521367662
Release Date: 1990
Genre: Lattice theory

This is the first introductory textbook on ordered sets and lattices, and covers both the basic theory and its applications. The importance of ordered structures has been increasingly recognised in recent years due to an explosion of interest in computer science and all areas of discrete mathematics. The authors provide a thorough introduction to ordered sets, lattices, distributive lattices and Boolean algebras. Ordered sets, and in particular lattices, can be represented pictorially, and this key feature is emphasised throughout. Lattices are also considered as algebraic structures and their study from this viewpoint reinforces ideas encountered in the theory of groups and rings. The representation of distributive lattices by ordered topological spaces is presented; a self-contained treatment of the requisite topology is included. Two chapters are devoted to topics with application to computer science. These cover complete partial orders, domains (including their relation to information systems), and fixpoint theory. Another chapter deals with formal concept analysis - a new and important application of lattice theory of interest to mathematicians and social scientists. Prerequisites are minimal; all that is assumed is exposure to the notation of set theory and elementary abstract algebra. The numerous classroom-tested exercises will make the book especially useful for course accompaniment, but it will also be valuable as a background reference for mathematicians, logicians and computer scientists.

Lattices and Ordered Sets

Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0387789014
Release Date: 2008-12-15
Genre: Mathematics

This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.

Introduction To Lattices And Order South Asian Edition 2E

Author: B. A. Davey and H. A. Priestley
Publisher:
ISBN: 052113451X
Release Date: 2009-07-01
Genre:

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Lattice Theory

Author: George Gratzer
Publisher: Courier Corporation
ISBN: 9780486471730
Release Date: 2009
Genre: Mathematics

This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.

Introduction to Lattice Theory with Computer Science Applications

Author: Vijay K. Garg
Publisher: John Wiley & Sons
ISBN: 9781119069737
Release Date: 2016-03-02
Genre: Computers

A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.

Ordered Sets

Author: Bernd Schroeder
Publisher: Springer Science & Business Media
ISBN: 9781461200536
Release Date: 2012-12-06
Genre: Mathematics

An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.

Lattices and Ordered Algebraic Structures

Author: T.S. Blyth
Publisher: Springer Science & Business Media
ISBN: 9781846281273
Release Date: 2006-03-30
Genre: Mathematics

"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS

Lattice Theory Foundation

Author: George Grätzer
Publisher: Springer Science & Business Media
ISBN: 3034800185
Release Date: 2011-02-14
Genre: Mathematics

This book started with Lattice Theory, First Concepts, in 1971. Then came General Lattice Theory, First Edition, in 1978, and the Second Edition twenty years later. Since the publication of the first edition in 1978, General Lattice Theory has become the authoritative introduction to lattice theory for graduate students and the standard reference for researchers. The First Edition set out to introduce and survey lattice theory. Some 12,000 papers have been published in the field since then; so Lattice Theory: Foundation focuses on introducing the field, laying the foundation for special topics and applications. Lattice Theory: Foundation, based on the previous three books, covers the fundamental concepts and results. The main topics are distributivity, congruences, constructions, modularity and semimodularity, varieties, and free products. The chapter on constructions is new, all the other chapters are revised and expanded versions from the earlier volumes. Almost 40 “diamond sections’’, many written by leading specialists in these fields, provide a brief glimpse into special topics beyond the basics. “Lattice theory has come a long way... For those who appreciate lattice theory, or who are curious about its techniques and intriguing internal problems, Professor Grätzer's lucid new book provides a most valuable guide to many recent developments. Even a cursory reading should provide those few who may still believe that lattice theory is superficial or naive, with convincing evidence of its technical depth and sophistication.” Bulletin of the American Mathematical Society “Grätzer’s book General Lattice Theory has become the lattice theorist’s bible.” Mathematical Reviews

Introduction to Lattice Dynamics

Author: Martin T. Dove
Publisher: Cambridge University Press
ISBN: 0521392934
Release Date: 1993-10-21
Genre: Science

The vibrations of atoms inside crystals - lattice dynamics - is basic to many fields of study in the solid-state and mineral sciences. This book provides a self-contained text that introduces the subject from a basic level and then takes the reader through applications of the theory.

Quarks Gluons and Lattices

Author: Michael Creutz
Publisher: Cambridge University Press
ISBN: 0521315352
Release Date: 1983
Genre: Science

This book introduces the lattice approach to quantum field theory. The spectacular successes of this technique include compelling evidence that exchange of gauge gluons can confine the quarks within subnuclear matter. The lattice framework enables novel schemes for quantitative calculation and has caused considerable cross-disciplinary activity between elementary particle and solid state physicists. The treatment begins with the lattice definition of a path integral and ends on Monte Carlo simulation methods. Other topics include invariant group integration, duality, mean field theory and renormalization group techniques. The reader is assumed to have a basic background in relativistic quantum mechanics and some exposure to gauge theories.

Symmetry

Author: R. McWeeny
Publisher: Elsevier
ISBN: 9781483226248
Release Date: 2013-09-03
Genre: Mathematics

Symmetry: An Introduction to Group Theory and its Application is an eight-chapter text that covers the fundamental bases, the development of the theoretical and experimental aspects of the group theory. Chapter 1 deals with the elementary concepts and definitions, while Chapter 2 provides the necessary theory of vector spaces. Chapters 3 and 4 are devoted to an opportunity of actually working with groups and representations until the ideas already introduced are fully assimilated. Chapter 5 looks into the more formal theory of irreducible representations, while Chapter 6 is concerned largely with quadratic forms, illustrated by applications to crystal properties and to molecular vibrations. Chapter 7 surveys the symmetry properties of functions, with special emphasis on the eigenvalue equation in quantum mechanics. Chapter 8 covers more advanced applications, including the detailed analysis of tensor properties and tensor operators. This book is of great value to mathematicians, and math teachers and students.

Residuated Lattices An Algebraic Glimpse at Substructural Logics

Author: Nikolaos Galatos
Publisher: Elsevier
ISBN: 0080489648
Release Date: 2007-04-25
Genre: Mathematics

The book is meant to serve two purposes. The first and more obvious one is to present state of the art results in algebraic research into residuated structures related to substructural logics. The second, less obvious but equally important, is to provide a reasonably gentle introduction to algebraic logic. At the beginning, the second objective is predominant. Thus, in the first few chapters the reader will find a primer of universal algebra for logicians, a crash course in nonclassical logics for algebraists, an introduction to residuated structures, an outline of Gentzen-style calculi as well as some titbits of proof theory - the celebrated Hauptsatz, or cut elimination theorem, among them. These lead naturally to a discussion of interconnections between logic and algebra, where we try to demonstrate how they form two sides of the same coin. We envisage that the initial chapters could be used as a textbook for a graduate course, perhaps entitled Algebra and Substructural Logics. As the book progresses the first objective gains predominance over the second. Although the precise point of equilibrium would be difficult to specify, it is safe to say that we enter the technical part with the discussion of various completions of residuated structures. These include Dedekind-McNeille completions and canonical extensions. Completions are used later in investigating several finiteness properties such as the finite model property, generation of varieties by their finite members, and finite embeddability. The algebraic analysis of cut elimination that follows, also takes recourse to completions. Decidability of logics, equational and quasi-equational theories comes next, where we show how proof theoretical methods like cut elimination are preferable for small logics/theories, but semantic tools like Rabin's theorem work better for big ones. Then we turn to Glivenko's theorem, which says that a formula is an intuitionistic tautology if and only if its double negation is a classical one. We generalise it to the substructural setting, identifying for each substructural logic its Glivenko equivalence class with smallest and largest element. This is also where we begin investigating lattices of logics and varieties, rather than particular examples. We continue in this vein by presenting a number of results concerning minimal varieties/maximal logics. A typical theorem there says that for some given well-known variety its subvariety lattice has precisely such-and-such number of minimal members (where values for such-and-such include, but are not limited to, continuum, countably many and two). In the last two chapters we focus on the lattice of varieties corresponding to logics without contraction. In one we prove a negative result: that there are no nontrivial splittings in that variety. In the other, we prove a positive one: that semisimple varieties coincide with discriminator ones. Within the second, more technical part of the book another transition process may be traced. Namely, we begin with logically inclined technicalities and end with algebraically inclined ones. Here, perhaps, algebraic rendering of Glivenko theorems marks the equilibrium point, at least in the sense that finiteness properties, decidability and Glivenko theorems are of clear interest to logicians, whereas semisimplicity and discriminator varieties are universal algebra par exellence. It is for the reader to judge whether we succeeded in weaving these threads into a seamless fabric.