Introduction to Lattices and Order

Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 0521784514
Release Date: 2002-04-18
Genre: Mathematics

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Introduction to Lattices and Order

Author: B. A. Davey
Publisher: Cambridge University Press
ISBN: 9781107717527
Release Date: 2002-04-18
Genre: Mathematics

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Introduction to Lattices and Order

Author: B. A. Davey
Publisher:
ISBN: 0521367662
Release Date: 1990
Genre: Lattice theory

This is the first introductory textbook on ordered sets and lattices, and covers both the basic theory and its applications. The importance of ordered structures has been increasingly recognised in recent years due to an explosion of interest in computer science and all areas of discrete mathematics. The authors provide a thorough introduction to ordered sets, lattices, distributive lattices and Boolean algebras. Ordered sets, and in particular lattices, can be represented pictorially, and this key feature is emphasised throughout. Lattices are also considered as algebraic structures and their study from this viewpoint reinforces ideas encountered in the theory of groups and rings. The representation of distributive lattices by ordered topological spaces is presented; a self-contained treatment of the requisite topology is included. Two chapters are devoted to topics with application to computer science. These cover complete partial orders, domains (including their relation to information systems), and fixpoint theory. Another chapter deals with formal concept analysis - a new and important application of lattice theory of interest to mathematicians and social scientists. Prerequisites are minimal; all that is assumed is exposure to the notation of set theory and elementary abstract algebra. The numerous classroom-tested exercises will make the book especially useful for course accompaniment, but it will also be valuable as a background reference for mathematicians, logicians and computer scientists.

Lattice Theory

Author: George Gratzer
Publisher: Courier Corporation
ISBN: 9780486471730
Release Date: 2009
Genre: Mathematics

This outstanding text is written in clear language and enhanced with many exercises, diagrams, and proofs. It discusses historical developments and future directions and provides an extensive bibliography and references. 1971 edition.

Lattices and Ordered Sets

Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 0387789014
Release Date: 2008-12-15
Genre: Mathematics

This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.

Introduction to Lattice Theory with Computer Science Applications

Author: Vijay K. Garg
Publisher: John Wiley & Sons
ISBN: 9781119069737
Release Date: 2016-03-02
Genre: Computers

A computational perspective on partial order and lattice theory, focusing on algorithms and their applications This book provides a uniform treatment of the theory and applications of lattice theory. The applications covered include tracking dependency in distributed systems, combinatorics, detecting global predicates in distributed systems, set families, and integer partitions. The book presents algorithmic proofs of theorems whenever possible. These proofs are written in the calculational style advocated by Dijkstra, with arguments explicitly spelled out step by step. The author’s intent is for readers to learn not only the proofs, but the heuristics that guide said proofs. Introduction to Lattice Theory with Computer Science Applications: Examines; posets, Dilworth’s theorem, merging algorithms, lattices, lattice completion, morphisms, modular and distributive lattices, slicing, interval orders, tractable posets, lattice enumeration algorithms, and dimension theory Provides end of chapter exercises to help readers retain newfound knowledge on each subject Includes supplementary material at www.ece.utexas.edu/~garg Introduction to Lattice Theory with Computer Science Applications is written for students of computer science, as well as practicing mathematicians.

Introduction To Lattices And Order South Asian Edition 2E

Author: B. A. Davey and H. A. Priestley
Publisher:
ISBN: 052113451X
Release Date: 2009-07-01
Genre:

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Lattice Theory Foundation

Author: George Grätzer
Publisher: Springer Science & Business Media
ISBN: 3034800185
Release Date: 2011-02-14
Genre: Mathematics

This book started with Lattice Theory, First Concepts, in 1971. Then came General Lattice Theory, First Edition, in 1978, and the Second Edition twenty years later. Since the publication of the first edition in 1978, General Lattice Theory has become the authoritative introduction to lattice theory for graduate students and the standard reference for researchers. The First Edition set out to introduce and survey lattice theory. Some 12,000 papers have been published in the field since then; so Lattice Theory: Foundation focuses on introducing the field, laying the foundation for special topics and applications. Lattice Theory: Foundation, based on the previous three books, covers the fundamental concepts and results. The main topics are distributivity, congruences, constructions, modularity and semimodularity, varieties, and free products. The chapter on constructions is new, all the other chapters are revised and expanded versions from the earlier volumes. Almost 40 “diamond sections’’, many written by leading specialists in these fields, provide a brief glimpse into special topics beyond the basics. “Lattice theory has come a long way... For those who appreciate lattice theory, or who are curious about its techniques and intriguing internal problems, Professor Grätzer's lucid new book provides a most valuable guide to many recent developments. Even a cursory reading should provide those few who may still believe that lattice theory is superficial or naive, with convincing evidence of its technical depth and sophistication.” Bulletin of the American Mathematical Society “Grätzer’s book General Lattice Theory has become the lattice theorist’s bible.” Mathematical Reviews

Universal Algebra

Author: George Grätzer
Publisher: Springer Science & Business Media
ISBN: 0387774874
Release Date: 2008-12-15
Genre: Mathematics

Universal Algebra has become the most authoritative, consistently relied on text in a field with applications in other branches of algebra and other fields such as combinatorics, geometry, and computer science. Each chapter is followed by an extensive list of exercises and problems. The "state of the art" account also includes new appendices (with contributions from B. Jónsson, R. Quackenbush, W. Taylor, and G. Wenzel) and a well selected additional bibliography of over 1250 papers and books which makes this an indispensable new edition for students, faculty, and workers in the field.

Ordered Sets

Author: Bernd Schroeder
Publisher: Springer Science & Business Media
ISBN: 9781461200536
Release Date: 2012-12-06
Genre: Mathematics

An introduction to the basic tools of the theory of (partially) ordered sets such as visualization via diagrams, subsets, homomorphisms, important order-theoretical constructions and classes of ordered sets. Using a thematic approach, the author presents open or recently solved problems to motivate the development of constructions and investigations for new classes of ordered sets. The text can be used as a focused follow-up or companion to a first proof (set theory and relations) or graph theory course.

Introduction to Lattice Dynamics

Author: Martin T. Dove
Publisher: Cambridge University Press
ISBN: 0521392934
Release Date: 1993-10-21
Genre: Science

The vibrations of atoms inside crystals - lattice dynamics - is basic to many fields of study in the solid-state and mineral sciences. This book provides a self-contained text that introduces the subject from a basic level and then takes the reader through applications of the theory.

Introduction to Mathematics of Satisfiability

Author: Victor W. Marek
Publisher: CRC Press
ISBN: 1439801746
Release Date: 2009-09-22
Genre: Mathematics

Although this area has a history of over 80 years, it was not until the creation of efficient SAT solvers in the mid-1990s that it became practically important, finding applications in electronic design automation, hardware and software verification, combinatorial optimization, and more. Exploring the theoretical and practical aspects of satisfiability, Introduction to Mathematics of Satisfiability focuses on the satisfiability of theories consisting of propositional logic formulas. It describes how SAT solvers and techniques are applied to problems in mathematics and computer science as well as important applications in computer engineering. The book first deals with logic fundamentals, including the syntax of propositional logic, complete sets of functors, normal forms, the Craig lemma, and compactness. It then examines clauses, their proof theory and semantics, and basic complexity issues of propositional logic. The final chapters on knowledge representation cover finite runs of Turing machines and encodings into SAT. One of the pioneers of answer set programming, the author shows how constraint satisfaction systems can be worked out by satisfiability solvers and how answer set programming can be used for knowledge representation.

Universal Algebra

Author: Clifford Bergman
Publisher: CRC Press
ISBN: 9781439851296
Release Date: 2011-09-20
Genre: Computers

Starting with the most basic notions, Universal Algebra: Fundamentals and Selected Topics introduces all the key elements needed to read and understand current research in this field. Based on the author’s two-semester course, the text prepares students for research work by providing a solid grounding in the fundamental constructions and concepts of universal algebra and by introducing a variety of recent research topics. The first part of the book focuses on core components, including subalgebras, congruences, lattices, direct and subdirect products, isomorphism theorems, a clone of operations, terms, free algebras, Birkhoff’s theorem, and standard Maltsev conditions. The second part covers topics that demonstrate the power and breadth of the subject. The author discusses the consequences of Jónsson’s lemma, finitely and nonfinitely based algebras, definable principal congruences, and the work of Foster and Pixley on primal and quasiprimal algebras. He also includes a proof of Murskiĭ’s theorem on primal algebras and presents McKenzie’s characterization of directly representable varieties, which clearly shows the power of the universal algebraic toolbox. The last chapter covers the rudiments of tame congruence theory. Throughout the text, a series of examples illustrates concepts as they are introduced and helps students understand how universal algebra sheds light on topics they have already studied, such as Abelian groups and commutative rings. Suitable for newcomers to the field, the book also includes carefully selected exercises that reinforce the concepts and push students to a deeper understanding of the theorems and techniques.

Quarks Gluons and Lattices

Author: Michael Creutz
Publisher: Cambridge University Press
ISBN: 0521315352
Release Date: 1983
Genre: Science

This book introduces the lattice approach to quantum field theory. The spectacular successes of this technique include compelling evidence that exchange of gauge gluons can confine the quarks within subnuclear matter. The lattice framework enables novel schemes for quantitative calculation and has caused considerable cross-disciplinary activity between elementary particle and solid state physicists. The treatment begins with the lattice definition of a path integral and ends on Monte Carlo simulation methods. Other topics include invariant group integration, duality, mean field theory and renormalization group techniques. The reader is assumed to have a basic background in relativistic quantum mechanics and some exposure to gauge theories.