Introduction to Linear Optimization and Extensions with MATLAB

Author: Roy H. Kwon
Publisher: CRC Press
ISBN: 9781482204346
Release Date: 2013-09-05
Genre: Business & Economics

Filling the need for an introductory book on linear programming that discusses the important ways to mitigate parameter uncertainty, Introduction to Linear Optimization and Extensions with MATLAB® provides a concrete and intuitive yet rigorous introduction to modern linear optimization. In addition to fundamental topics, the book discusses current linear optimization technologies such as predictor-path following interior point methods for both linear and quadratic optimization as well as the inclusion of linear optimization of uncertainty i.e. stochastic programming with recourse and robust optimization. The author introduces both stochastic programming and robust optimization as frameworks to deal with parameter uncertainty. The author’s unusual approach—developing these topics in an introductory book—highlights their importance. Since most applications require decisions to be made in the face of uncertainty, the early introduction of these topics facilitates decision making in real world environments. The author also includes applications and case studies from finance and supply chain management that involve the use of MATLAB. Even though there are several LP texts in the marketplace, most do not cover data uncertainty using stochastic programming and robust optimization techniques. Most emphasize the use of MS Excel, while this book uses MATLAB which is the primary tool of many engineers, including financial engineers. The book focuses on state-of-the-art methods for dealing with parameter uncertainty in linear programming, rigorously developing theory and methods. But more importantly, the author’s meticulous attention to developing intuition before presenting theory makes the material come alive.

Linear Programming

Author: Vasek Chvatal
Publisher: Macmillan
ISBN: 0716715872
Release Date: 1983-09-15
Genre: Mathematics

For upper-division/graduate courses in operations research/management science, mathematics, and computer science, this text covers basic theory, selected applications, network flow problems, and advanced techniques.

Theory of Linear and Integer Programming

Author: Alexander Schrijver
Publisher: John Wiley & Sons
ISBN: 0471982326
Release Date: 1998-07-07
Genre: Mathematics

Theory of Linear and Integer Programming Alexander Schrijver Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands This book describes the theory of linear and integer programming and surveys the algorithms for linear and integer programming problems, focusing on complexity analysis. It aims at complementing the more practically oriented books in this field. A special feature is the author's coverage of important recent developments in linear and integer programming. Applications to combinatorial optimization are given, and the author also includes extensive historical surveys and bibliographies. The book is intended for graduate students and researchers in operations research, mathematics and computer science. It will also be of interest to mathematical historians. Contents 1 Introduction and preliminaries; 2 Problems, algorithms, and complexity; 3 Linear algebra and complexity; 4 Theory of lattices and linear diophantine equations; 5 Algorithms for linear diophantine equations; 6 Diophantine approximation and basis reduction; 7 Fundamental concepts and results on polyhedra, linear inequalities, and linear programming; 8 The structure of polyhedra; 9 Polarity, and blocking and anti-blocking polyhedra; 10 Sizes and the theoretical complexity of linear inequalities and linear programming; 11 The simplex method; 12 Primal-dual, elimination, and relaxation methods; 13 Khachiyan's method for linear programming; 14 The ellipsoid method for polyhedra more generally; 15 Further polynomiality results in linear programming; 16 Introduction to integer linear programming; 17 Estimates in integer linear programming; 18 The complexity of integer linear programming; 19 Totally unimodular matrices: fundamental properties and examples; 20 Recognizing total unimodularity; 21 Further theory related to total unimodularity; 22 Integral polyhedra and total dual integrality; 23 Cutting planes; 24 Further methods in integer linear programming; Historical and further notes on integer linear programming; References; Notation index; Author index; Subject index

Nonlinear Programming

Author: Dimitri P. Bertsekas
Publisher:
ISBN: 1886529051
Release Date: 2016
Genre: Mathematical optimization

The third edition of the book is a thoroughly rewritten version of the 1999 2nd edition. New material was included, some of the old material was discarded, and a large portion of the remainder was reorganized or revised. This book provides a comprehensive and accessible presentation of algorithms for solving continuous optimization problems. It relies on rigorous mathematical analysis, but also aims at an intuitive exposition that makes use of visualization where possible. It places particular emphasis on modern developments, and their widespread applications in fields such as large-scale resource allocation problems, signal processing, and machine learning. The book was developed through instruction at MIT, focuses on nonlinear and other types of optimization: iterative algorithms for constrained and unconstrained optimization, Lagrange multipliers and duality, large scale problems, and the interface between continuous and discrete optimization. Among its special features, the book: 1) provides extensive coverage of iterative optimization methods within a unifying framework 2) provides a detailed treatment of interior point methods for linear programming 3) covers in depth duality theory from both a variational and a geometrical/convex analysis point of view 4) includes much new material on a number of topics, such as neural network training, large-scale optimization, signal processing, machine learning, and optimal control 5) includes a large number of examples and exercises detailed solutions of many of which are posted on the internet.

Constrained Optimization and Lagrange Multiplier Methods

Author: Dimitri P. Bertsekas
Publisher: Academic Press
ISBN: 9781483260471
Release Date: 2014-05-10
Genre: Mathematics

Computer Science and Applied Mathematics: Constrained Optimization and Lagrange Multiplier Methods focuses on the advancements in the applications of the Lagrange multiplier methods for constrained minimization. The publication first offers information on the method of multipliers for equality constrained problems and the method of multipliers for inequality constrained and nondifferentiable optimization problems. Discussions focus on approximation procedures for nondifferentiable and ill-conditioned optimization problems; asymptotically exact minimization in the methods of multipliers; duality framework for the method of multipliers; and the quadratic penalty function method. The text then examines exact penalty methods, including nondifferentiable exact penalty functions; linearization algorithms based on nondifferentiable exact penalty functions; differentiable exact penalty functions; and local and global convergence of Lagrangian methods. The book ponders on the nonquadratic penalty functions of convex programming. Topics include large scale separable integer programming problems and the exponential method of multipliers; classes of penalty functions and corresponding methods of multipliers; and convergence analysis of multiplier methods. The text is a valuable reference for mathematicians and researchers interested in the Lagrange multiplier methods.

Understanding and Using Linear Programming

Author: Jiri Matousek
Publisher: Springer Science & Business Media
ISBN: 9783540307174
Release Date: 2007-07-04
Genre: Mathematics

The book is an introductory textbook mainly for students of computer science and mathematics. Our guiding phrase is "what every theoretical computer scientist should know about linear programming". A major focus is on applications of linear programming, both in practice and in theory. The book is concise, but at the same time, the main results are covered with complete proofs and in sufficient detail, ready for presentation in class. The book does not require more prerequisites than basic linear algebra, which is summarized in an appendix. One of its main goals is to help the reader to see linear programming "behind the scenes".

Convex Optimization

Author: Stephen P. Boyd
Publisher: Cambridge University Press
ISBN: 0521833787
Release Date: 2004-03-08
Genre: Business & Economics

A comprehensive introduction to the tools, techniques and applications of convex optimization.

Linear Programming

Author: Robert J Vanderbei
Publisher: Springer Science & Business Media
ISBN: 9781475756623
Release Date: 2013-06-29
Genre: Business & Economics

This book provides an introduction to optimization. It details constrained optimization, beginning with a substantial treatment of linear programming and proceeding to convex analysis, network flows, integer programming, quadratic programming, and convex optimization. Coverage underscores the purpose of optimization: to solve practical problems on a computer. C programs that implement the major algorithms and JAVA tools are available online.

Linear and Integer Optimization

Author: Gerard Sierksma
Publisher: CRC Press
ISBN: 9781498743129
Release Date: 2015-05-01
Genre: Business & Economics

Presenting a strong and clear relationship between theory and practice, Linear and Integer Optimization: Theory and Practice is divided into two main parts. The first covers the theory of linear and integer optimization, including both basic and advanced topics. Dantzig’s simplex algorithm, duality, sensitivity analysis, integer optimization models, and network models are introduced. More advanced topics also are presented including interior point algorithms, the branch-and-bound algorithm, cutting planes, complexity, standard combinatorial optimization models, the assignment problem, minimum cost flow, and the maximum flow/minimum cut theorem. The second part applies theory through real-world case studies. The authors discuss advanced techniques such as column generation, multiobjective optimization, dynamic optimization, machine learning (support vector machines), combinatorial optimization, approximation algorithms, and game theory. Besides the fresh new layout and completely redesigned figures, this new edition incorporates modern examples and applications of linear optimization. The book now includes computer code in the form of models in the GNU Mathematical Programming Language (GMPL). The models and corresponding data files are available for download and can be readily solved using the provided online solver. This new edition also contains appendices covering mathematical proofs, linear algebra, graph theory, convexity, and nonlinear optimization. All chapters contain extensive examples and exercises. This textbook is ideal for courses for advanced undergraduate and graduate students in various fields including mathematics, computer science, industrial engineering, operations research, and management science.

Convex Optimization Theory

Author: Dimitri P. Bertsekas
Publisher:
ISBN: 1886529310
Release Date: 2009
Genre: Mathematics

An insightful, concise, and rigorous treatment of the basic theory of convex sets and functions in finite dimensions, and the analytical/geometrical foundations of convex optimization and duality theory. Convexity theory is first developed in a simple accessible manner, using easily visualized proofs. Then the focus shifts to a transparent geometrical line of analysis to develop the fundamental duality between descriptions of convex sets and functions in terms of points and in terms of hyperplanes. Finally, convexity theory and abstract duality are applied to problems of constrained optimization, Fenchel and conic duality, and game theory to develop the sharpest possible duality results within a highly visual geometric framework.

Introduction to Linear Programming

Author: Leonid Nison Vaserstein
Publisher: Prentice Hall
ISBN: 0130359173
Release Date: 2003
Genre: Mathematics

For a one-semester course in Linear Programming for upper-level students with varying mathematical backgrounds. Written to include three different mathematical levels, this text strikes the necessary balance for a class consisting of students with varying mathematical backgrounds. It covers the basics of Linear Programs and also includes an appendix that develops many advanced topics in mathematical programming for students who plan to go on to graduate-level study in this field. Many exercises of varying difficulty provide introductory students the opportunity to progress through the material at a steady pace, while advanced students can proceed to the more challenging material.

Author: Dimitri P. Bertsekas
Publisher: 清华大学出版社有限公司
ISBN: 7302123284
Release Date: 2006
Genre: Convex functions

国际知名大学原版教材信息技术学科与电气工程学科系列 30

Adventures in Stochastic Processes

Author: Sidney I. Resnick
Publisher: Springer Science & Business Media
ISBN: 9781461203872
Release Date: 2013-12-11
Genre: Mathematics

Stochastic processes are necessary ingredients for building models of a wide variety of phenomena exhibiting time varying randomness. This text offers easy access to this fundamental topic for many students of applied sciences at many levels. It includes examples, exercises, applications, and computational procedures. It is uniquely useful for beginners and non-beginners in the field. No knowledge of measure theory is presumed.