Introduction to Mathematical Systems Theory

Author: Christiaan Heij
Publisher: Springer Science & Business Media
ISBN: 9783764375492
Release Date: 2006-12-18
Genre: Science

This book provides an introduction to the theory of linear systems and control for students in business mathematics, econometrics, computer science, and engineering; the focus is on discrete time systems. The subjects treated are among the central topics of deterministic linear system theory: controllability, observability, realization theory, stability and stabilization by feedback, LQ-optimal control theory. Kalman filtering and LQC-control of stochastic systems are also discussed, as are modeling, time series analysis and model specification, along with model validation.

Identification of Dynamic Systems

Author: Rolf Isermann
Publisher: Springer Science & Business Media
ISBN: 3540788794
Release Date: 2010-11-22
Genre: Technology & Engineering

Precise dynamic models of processes are required for many applications, ranging from control engineering to the natural sciences and economics. Frequently, such precise models cannot be derived using theoretical considerations alone. Therefore, they must be determined experimentally. This book treats the determination of dynamic models based on measurements taken at the process, which is known as system identification or process identification. Both offline and online methods are presented, i.e. methods that post-process the measured data as well as methods that provide models during the measurement. The book is theory-oriented and application-oriented and most methods covered have been used successfully in practical applications for many different processes. Illustrative examples in this book with real measured data range from hydraulic and electric actuators up to combustion engines. Real experimental data is also provided on the Springer webpage, allowing readers to gather their first experience with the methods presented in this book. Among others, the book covers the following subjects: determination of the non-parametric frequency response, (fast) Fourier transform, correlation analysis, parameter estimation with a focus on the method of Least Squares and modifications, identification of time-variant processes, identification in closed-loop, identification of continuous time processes, and subspace methods. Some methods for nonlinear system identification are also considered, such as the Extended Kalman filter and neural networks. The different methods are compared by using a real three-mass oscillator process, a model of a drive train. For many identification methods, hints for the practical implementation and application are provided. The book is intended to meet the needs of students and practicing engineers working in research and development, design and manufacturing.

System Identification

Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 0857295225
Release Date: 2011-05-16
Genre: Technology & Engineering

System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Intelligent Control Systems Using Computational Intelligence Techniques

Author: A.E. Ruano
Publisher: IET
ISBN: 0863414893
Release Date: 2005
Genre: Computers

Intelligent Control techniques are becoming important tools in both academia and industry. Methodologies developed in the field of soft-computing, such as neural networks, fuzzy systems and evolutionary computation, can lead to accommodation of more complex processes, improved performance and considerable time savings and cost reductions. Intelligent Control Systems using Computational Intellingence Techniques details the application of these tools to the field of control systems. Each chapter gives and overview of current approaches in the topic covered, with a set of the most important references in the field, and then details the author's approach, examining both the theory and practical applications.

Wave Motion Intelligent Structures and Nonlinear Mechanics

Author: Herbert šberall
Publisher: World Scientific
ISBN: 981022981X
Release Date: 1995
Genre: Science

This book is a collection of papers on the subject of applied system dynamics and control written by experts in this field. It offers the reader a sampling of exciting research areas in three fast-growing branches: (i) Wave Motion (ii) Intelligent Structures (iii) Nonlinear Mechanics. The topics covered include flow instability, nonlinear mode localization autoparametric systems with pendula, and geometric stiffening in multibody dynamics. Mathematical methods include perturbation methods, modern control theory, nonlinear neural nets, and resonance scattering theory of šberall-Ripoche-Maze. Applications include sound-induced structural vibrations, fiber acoustic waveguides, vibration suppression of structures, linear control of gyroscopic systems, and nonlinear control of distributed systems.This book shows how applied system dynamics and control is currently being utilized and investigated. It will be of interest to engineers, applied mathematicians and physicists.

Low Rank Approximation

Author: Ivan Markovsky
Publisher: Springer
ISBN: 9783319896205
Release Date: 2018-08-03
Genre: Technology & Engineering

This book is a comprehensive exposition of the theory, algorithms, and applications of structured low-rank approximation. Local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. A major part of the text is devoted to application of the theory with a range of applications from systems and control theory to psychometrics being described. Special knowledge of the application fields is not required. The second edition of /Low-Rank Approximation/ is a thoroughly edited and extensively rewritten revision. It contains new chapters and sections that introduce the topics of: • variable projection for structured low-rank approximation;• missing data estimation;• data-driven filtering and control;• stochastic model representation and identification;• identification of polynomial time-invariant systems; and• blind identification with deterministic input model. The book is complemented by a software implementation of the methods presented, which makes the theory directly applicable in practice. In particular, all numerical examples in the book are included in demonstration files and can be reproduced by the reader. This gives hands-on experience with the theory and methods detailed. In addition, exercises and MATLAB^® /Octave examples will assist the reader quickly to assimilate the theory on a chapter-by-chapter basis. “Each chapter is completed with a new section of exercises to which complete solutions are provided.” Low-Rank Approximation (second edition) is a broad survey of the Low-Rank Approximation theory and applications of its field which will be of direct interest to researchers in system identification, control and systems theory, numerical linear algebra and optimization. The supplementary problems and solutions render it suitable for use in teaching graduate courses in those subjects as well.

Directions in Mathematical Systems Theory and Optimization

Author: Anders Rantzer
Publisher: Springer Science & Business Media
ISBN: 9783540000655
Release Date: 2002-11-05
Genre: Computers

For more than three decades, Anders Lindquist has delivered fundamental cont- butions to the ?elds of systems, signals and control. Throughout this period, four themes can perhaps characterize his interests: Modeling, estimation and ?ltering, feedback and robust control. His contributions to modeling include seminal work on the role of splitting subspaces in stochastic realization theory, on the partial realization problem for both deterministic and stochastic systems, on the solution of the rational covariance extension problem and on system identi?cation. His contributions to ?ltering and estimation include the development of fast ?ltering algorithms, leading to a nonlinear dynamical system which computes spectral factors in its steady state, and which provide an alternate, linear in the dimension of the state space, to computing the Kalman gain from a matrix Riccati equation. His further research on the phase portrait of this dynamical system gave a better understanding of when the Kalman ?lter will converge, answering an open question raised by Kalman. While still a student he established the separation principle for stochastic function differential equations, including some fundamental work on optimal control for stochastic systems with time lags. He continued his interest in feedback control by deriving optimal and robust control feedback laws for suppressing the effects of harmonic disturbances. Moreover, his recent work on a complete parameterization of all rational solutions to the Nevanlinna-Pick problem is providing a new approach to robust control design.

Neural Networks for Control

Author: W. Thomas Miller
Publisher: MIT Press
ISBN: 026263161X
Release Date: 1995
Genre: Psychology

Neural Networks for Control highlights key issues in learning control and identifiesresearch directions that could lead to practical solutions for control problems in criticalapplication domains. It addresses general issues of neural network based control and neural networklearning with regard to specific problems of motion planning and control in robotics, and takes upapplication domains well suited to the capabilities of neural network controllers. The appendixdescribes seven benchmark control problems.W. Thomas Miller, III is Professor of Electrical andComputer Engineering at the University of New Hampshire. Richard S. Sutton works for GTELaboratories Incorporated. Paul J. Werbos is Program Director for Neuroengineering at the NationalScience Foundation.Contributors: Andrew G. Barto. Ronald J. Williams. Paul J. Werbos. Kumpati S.Narendra. L. Gordon Kraft, III, David P. Campagna. Mitsuo Kawato. Bartlett W. Met. Christopher G.Atkeson, David J. Reinkensmeyer. Derrick Nguyen, Bernard Widrow. James C. Houk, Satinder P. Singh,Charles Fisher. Judy A. Franklin, Oliver G. Selfridge. Arthur C. Sanderson. Lyle H. Ungar. CharlesC. Jorgensen, C. Schley. Martin Herman, James S. Albus, Tsai-Hong Hong. Charles W. Anderson, W.Thomas Miller, III.

Linear Operators and Linear Systems

Author: Jonathan R. Partington
Publisher: Cambridge University Press
ISBN: 0521546192
Release Date: 2004-03-15
Genre: Mathematics

"Suitable for students of analysis, this book also acts as an introduction to a mathematical approach to systems and control for graduate students in departments of applied mathematics or engineering."--Jacket.

An Introduction to Infinite Dimensional Linear Systems Theory

Author: Ruth F. Curtain
Publisher: Springer Science & Business Media
ISBN: 0387944753
Release Date: 1995-06-23
Genre: Mathematics

Infinite dimensional systems is now an established area of research. Given the recent trend in systems theory and in applications towards a synthesis of time- and frequency-domain methods, there is a need for an introductory text which treats both state-space and frequency-domain aspects in an integrated fashion. The authors' primary aim is to write an introductory textbook for a course on infinite dimensional linear systems. An important consideration by the authors is that their book should be accessible to graduate engineers and mathematicians with a minimal background in functional analysis. Consequently, all the mathematical background is summarized in an extensive appendix. For the majority of students, this would be their only acquaintance with infinite dimensional systems.

System Identification

Author: Lennart Ljung
Publisher: Pearson Education
ISBN: 9780132440530
Release Date: 1998-12-29
Genre: Technology & Engineering

The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.

Discrete Time Linear Systems

Author: Guoxiang Gu
Publisher: Springer Science & Business Media
ISBN: 9781461422815
Release Date: 2012-02-14
Genre: Technology & Engineering

Discrete-Time Linear Systems: Theory and Design with Applications combines system theory and design in order to show the importance of system theory and its role in system design. The book focuses on system theory (including optimal state feedback and optimal state estimation) and system design (with applications to feedback control systems and wireless transceivers, plus system identification and channel estimation).

Mathematics of Complexity and Dynamical Systems

Author: Robert A. Meyers
Publisher: Springer Science & Business Media
ISBN: 9781461418054
Release Date: 2011-10-05
Genre: Mathematics

Mathematics of Complexity and Dynamical Systems is an authoritative reference to the basic tools and concepts of complexity, systems theory, and dynamical systems from the perspective of pure and applied mathematics. Complex systems are systems that comprise many interacting parts with the ability to generate a new quality of collective behavior through self-organization, e.g. the spontaneous formation of temporal, spatial or functional structures. These systems are often characterized by extreme sensitivity to initial conditions as well as emergent behavior that are not readily predictable or even completely deterministic. The more than 100 entries in this wide-ranging, single source work provide a comprehensive explication of the theory and applications of mathematical complexity, covering ergodic theory, fractals and multifractals, dynamical systems, perturbation theory, solitons, systems and control theory, and related topics. Mathematics of Complexity and Dynamical Systems is an essential reference for all those interested in mathematical complexity, from undergraduate and graduate students up through professional researchers.

Mathematical Methods for Robust and Nonlinear Control

Author: Matthew C. Turner
Publisher: Springer Science & Business Media
ISBN: 9781848000254
Release Date: 2007-10-23
Genre: Technology & Engineering

The underlying theory on which much modern robust and nonlinear control is based can be difficult to grasp. This volume is a collection of lecture notes presented by experts in advanced control engineering. The book is designed to provide a better grounding in the theory underlying several important areas of control. It is hoped the book will help the reader to apply otherwise abstruse ideas of nonlinear control in a variety of real systems.