Introduction to Metric and Topological Spaces

Author: Wilson A Sutherland
Publisher: Oxford University Press
ISBN: 9780199563074
Release Date: 2009-06-18
Genre: Mathematics

This fully updated new edition of Wilson Sutherland's classic text, Introduction to Metric and Topological Spaces, establishes the language of metric and topological spaces with continuity as the motivating concept, before developing its discussion to cover compactness, connectedness, and completeness.

Introduction to Metric and Topological Spaces

Author: Wilson A Sutherland
Publisher: Oxford University Press
ISBN: 9780191568305
Release Date: 2009-06-18
Genre: Mathematics

One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book.

Introduction to Metric and Topological Spaces

Author: Wilson Alexander Sutherland
Publisher: Oxford University Press
ISBN: 0198531613
Release Date: 1975
Genre: Science

One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This book introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces. The book is aimed primarily at the second-year mathematics student, and numerous exercises are included.

Topological Spaces

Author: Gerard Buskes
Publisher: Springer Science & Business Media
ISBN: 9781461206651
Release Date: 2012-12-06
Genre: Mathematics

gentle introduction to the subject, leading the reader to understand the notion of what is important in topology with regard to geometry. Divided into three sections - The line and the plane, Metric spaces and Topological spaces -, the book eases the move into higher levels of abstraction. Students are thereby informally assisted in learning new ideas while remaining on familiar territory. The authors do not assume previous knowledge of axiomatic approach or set theory. Similarly, they have restricted the mathematical vocabulary in the book so as to avoid overwhelming the reader, and the concept of convergence is employed to allow students to focus on a central theme while moving to a natural understanding of the notion of topology. The pace of the book is relaxed with gradual acceleration: the first nine sections form a balanced course in metric spaces for undergraduates while also containing ample material for a two-semester graduate course. Finally, the book illustrates the many connections between topology and other subjects, such as analysis and set theory, via the inclusion of "Extras" at the end of each chapter presenting a brief foray outside topology.

Metric Spaces

Author: Mícheál O'Searcoid
Publisher: Springer Science & Business Media
ISBN: 1846286271
Release Date: 2006-12-26
Genre: Mathematics

The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.

Introduction to Banach Spaces and Algebras

Author: Graham R. Allan
Publisher: Oxford University Press
ISBN: 9780199206537
Release Date: 2011
Genre: Banach algebras

A graduate level text in functional analysis, with an emphasis on Banach algebras. Based on lectures given for Part III of the Cambridge Mathematical Tripos, the text will assume a familiarity with elementary real and complex analysis, and some acquaintance with metric spaces, analytic topology and normed spaces (but not theorems depending on Baire category, or any version of the Hahn-Banach theorem).

Set Theory and Metric Spaces

Author: Irving Kaplansky
Publisher: American Mathematical Soc.
ISBN: 9780821826942
Release Date: 2001
Genre: Mathematics

This is a book that could profitably be read by many graduate students or by seniors in strong major programs ... has a number of good features. There are many informal comments scattered between the formal development of theorems and these are done in a light and pleasant style. ... There is a complete proof of the equivalence of the axiom of choice, Zorn's Lemma, and well-ordering, as well as a discussion of the use of these concepts. There is also an interesting discussion of the continuum problem ... The presentation of metric spaces before topological spaces ... should be welcomed by most students, since metric spaces are much closer to the ideas of Euclidean spaces with which they are already familiar. --Canadian Mathematical Bulletin Kaplansky has a well-deserved reputation for his expository talents. The selection of topics is excellent. -- Lance Small, UC San Diego This book is based on notes from a course on set theory and metric spaces taught by Edwin Spanier, and also incorporates with his permission numerous exercises from those notes. The volume includes an Appendix that helps bridge the gap between metric and topological spaces, a Selected Bibliography, and an Index.

A Set Theory Workbook

Author: Iain Adamson
Publisher: Springer Science & Business Media
ISBN: 9780817681388
Release Date: 2012-09-10
Genre: Mathematics

This book is a companion to A general topology workbook published by Birkhiiuser last year. In an ideal world the order of publication would have been reversed, for the notation and some of the results of the present book are used in the topology book and on the other hand (the reader may be assured) no topology is used here. Both books share the word Workbook in their titles. They are based on the principle that for at least some branches of mathematics a good way for a student to learn is to be presented with a clear statement of the definitions of the terms with which the subject is concerned and then to be faced with a collection of problems involving the terms just defined. In adopting this approach with my Dundee students of set theory and general topology I found it best not to differentiate too precisely between simple illustrative examples, easy exercises and results which in conventional textbooks would be labelled as Theorems.

Topics on Analysis in Metric Spaces

Author: Luigi Ambrosio
Publisher: Oxford University Press on Demand
ISBN: 0198529384
Release Date: 2004
Genre: Mathematics

This book presents the main mathematical prerequisites for analysis in metric spaces. It covers abstract measure theory, Hausdorff measures, Lipschitz functions, covering theorums, lower semicontinuity of the one-dimensional Hausdorff measure, Sobolev spaces of maps between metric spaces, and Gromov-Hausdorff theory, all developed ina general metric setting. The existence of geodesics (and more generally of minimal Steiner connections) is discussed on general metric spaces and as an application of the Gromov-Hausdorff theory, even in some cases when the ambient space is not locally compact. A brief and very general description of the theory of integration with respect to non-decreasing set functions is presented following the Di Giorgi method of using the 'cavalieri' formula as the definition of the integral. Based on lecture notes from Scuola Normale, this book presents the main mathematical prerequisites for analysis in metric spaces. Supplemented with exercises of varying difficulty it is ideal for a graduate-level short course for applied mathematicians and engineers.

Introduction to Complex Analysis

Author: H. A. Priestley
Publisher: OUP Oxford
ISBN: 9780191037207
Release Date: 2003-08-28
Genre: Mathematics

Complex analysis is a classic and central area of mathematics, which is studied and exploited in a range of important fields, from number theory to engineering. Introduction to Complex Analysis was first published in 1985, and for this much awaited second edition the text has been considerably expanded, while retaining the style of the original. More detailed presentation is given of elementary topics, to reflect the knowledge base of current students. Exercise sets have been substantially revised and enlarged, with carefully graded exercises at the end of each chapter. This is the latest addition to the growing list of Oxford undergraduate textbooks in mathematics, which includes: Biggs: Discrete Mathematics 2nd Edition, Cameron: Introduction to Algebra, Needham: Visual Complex Analysis, Kaye and Wilson: Linear Algebra, Acheson: Elementary Fluid Dynamics, Jordan and Smith: Nonlinear Ordinary Differential Equations, Smith: Numerical Solution of Partial Differential Equations, Wilson: Graphs, Colourings and the Four-Colour Theorem, Bishop: Neural Networks for Pattern Recognition, Gelman and Nolan: Teaching Statistics.

Approach Spaces

Author: Robert Lowen
Publisher: Oxford University Press
ISBN: 9780198500308
Release Date: 1997
Genre: Mathematics

In topology the three basic concepts of metrics, topologies and uniformities have been treated so far as separate entities by means of different methods and terminology. This is the first book to treat all three concepts as a special case of the concept of approach spaces. The book explains the richness of approach structures in great detail; it provides a comprehensive explanation of the categorical set-up, develops the basic theory and provides many examples,displaying links with various areas of mathematics such as approximation theory, probability theory, analysis and hyperspace theory.

Topological and Uniform Spaces

Author: I.M. James
Publisher: Springer Science & Business Media
ISBN: 9781461247166
Release Date: 2012-12-06
Genre: Mathematics

This book is based on lectures I have given to undergraduate and graduate audiences at Oxford and elsewhere over the years. My aim has been to provide an outline of both the topological theory and the uniform theory, with an emphasis on the relation between the two. Although I hope that the prospec tive specialist may find it useful as an introduction it is the non-specialist I have had more in mind in selecting the contents. Thus I have tended to avoid the ingenious examples and counterexamples which often occupy much ofthe space in books on general topology, and I have tried to keep the number of definitions down to the essential minimum. There are no particular pre requisites but I have worked on the assumption that a potential reader will already have had some experience of working with sets and functions and will also be familiar with the basic concepts of algebra and analysis. There are a number of fine books on general topology, some of which I have listed in the Select Bibliography at the end of this volume. Of course I have benefited greatly from this previous work in writing my own account. Undoubtedly the strongest influence is that of Bourbaki's Topologie Generale [2], the definitive treatment of the subject which first appeared over a genera tion ago.

Linear Algebra

Author: Peter Petersen
Publisher: Springer Science & Business Media
ISBN: 9781461436126
Release Date: 2012-06-07
Genre: Mathematics

This textbook on linear algebra includes the key topics of the subject that most advanced undergraduates need to learn before entering graduate school. All the usual topics, such as complex vector spaces, complex inner products, the Spectral theorem for normal operators, dual spaces, the minimal polynomial, the Jordan canonical form, and the rational canonical form, are covered, along with a chapter on determinants at the end of the book. In addition, there is material throughout the text on linear differential equations and how it integrates with all of the important concepts in linear algebra. This book has several distinguishing features that set it apart from other linear algebra texts. For example: Gaussian elimination is used as the key tool in getting at eigenvalues; it takes an essentially determinant-free approach to linear algebra; and systems of linear differential equations are used as frequent motivation for the reader. Another motivating aspect of the book is the excellent and engaging exercises that abound in this text. This textbook is written for an upper-division undergraduate course on Linear Algebra. The prerequisites for this book are a familiarity with basic matrix algebra and elementary calculus, although any student who is willing to think abstractly should not have too much difficulty in understanding this text.

Undergraduate Topology

Author: Aisling McCluskey
Publisher: Oxford University Press
ISBN: 9780198702337
Release Date: 2014
Genre: Mathematics

This textbook offers an accessible, modern introduction at undergraduate level to an area known variously as general topology, point-set topology or analytic topology with a particular focus on helping students to build theory for themselves. It is the result of several years of the authors' combined university teaching experience stimulated by sustained interest in advanced mathematical thinking and learning, alongside established research careers in analytic topology. Point-set topology is a discipline that needs relatively little background knowledge, but sufficient determination to grasp ideas precisely and to argue with straight and careful logic. Research and long experience in undergraduate mathematics education suggests that an optimal way to learn such a subject is to teach it to yourself, pro-actively, by guided reading of brief skeleton notes and by doing your own spadework to fill in the details and to flesh out the examples. This text will facilitate such an approach for those learners who opt to do it this way and for those instructors who would like to encourage this so-called 'Moore approach', even for a modest segment of the teaching term or for part of the class. In reality, most students simply do not have the combination of time, background and motivation needed to implement such a plan fully. The accessibility, flexibility and completeness of this text enable it to be used equally effectively for more conventional instructor-led courses. Critically, it furnishes a rich variety of exercises and examples, many of which have specimen solutions, through which to gain in confidence and competence.