Introduction to Projective Geometry

Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 9780486141701
Release Date: 2011-09-12
Genre: Mathematics

This introductory volume offers strong reinforcement for its teachings, with detailed examples and numerous theorems, proofs, and exercises, plus complete answers to all odd-numbered end-of-chapter problems. 1970 edition.

Perspectives on Projective Geometry

Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
ISBN: 3642172865
Release Date: 2011-02-04
Genre: Mathematics

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Projective Geometry

Author: Rey Casse
Publisher: Oxford University Press
ISBN: 9780199298853
Release Date: 2006-08-03
Genre: Mathematics

This lucid and accessible text provides an introductory guide to projective geometry, an area of mathematics concerned with the properties and invariants of geometric figures under projection. Including numerous worked examples and exercises throughout, the book covers axiomatic geometry, field planes and PG(r, F), coordinating a projective plane, non-Desarguesian planes, conics and quadrics in PG(3, F). Assuming familiarity with linear algebra, elementary group theory, partial differentiation and finite fields, as well as some elementary coordinate geometry, this text is ideal for 3rd and 4th year mathematics undergraduates.

Projective Geometry

Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
ISBN: 0387406239
Release Date: 2003-10-09
Genre: Mathematics

In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Lectures in Projective Geometry

Author: A. Seidenberg
Publisher: Courier Corporation
ISBN: 9780486154732
Release Date: 2012-06-14
Genre: Mathematics

An ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.

An Introduction to Projective Geometry

Author: O'Hara C.W.
Publisher: Moulton Press
ISBN: 9781406719048
Release Date: 2007-03
Genre: Mathematics

PREFACE. THE Author of this very practical treatise on Scotch Loch - Fishing desires clearly that it may be of use to all who had it. He does not pretend to have written anything new, but to have attempted to put what he has to say in as readable a form as possible. Everything in the way of the history and habits of fish has been studiously avoided, and technicalities have been used as sparingly as possible. The writing of this book has afforded him pleasure in his leisure moments, and that pleasure would be much increased if he knew that the perusal of it would create any bond of sympathy between himself and the angling community in general. This section is interleaved with blank shects for the readers notes. The Author need hardly say that any suggestions addressed to the case of the publishers, will meet with consideration in a future edition. We do not pretend to write or enlarge upon a new subject. Much has been said and written-and well said and written too on the art of fishing but loch-fishing has been rather looked upon as a second-rate performance, and to dispel this idea is one of the objects for which this present treatise has been written. Far be it from us to say anything against fishing, lawfully practised in any form but many pent up in our large towns will bear us out when me say that, on the whole, a days loch-fishing is the most convenient. One great matter is, that the loch-fisher is depend- ent on nothing but enough wind to curl the water, -and on a large loch it is very seldom that a dead calm prevails all day, -and can make his arrangements for a day, weeks beforehand whereas the stream- fisher is dependent for a good take on the state of the water and however pleasant and easy it may be for one living near the banks of a good trout stream or river, it is quite another matter to arrange for a days river-fishing, if one is looking forward to a holiday at a date some weeks ahead. Providence may favour the expectant angler with a good day, and the water in order but experience has taught most of us that the good days are in the minority, and that, as is the case with our rapid running streams, -such as many of our northern streams are, -the water is either too large or too small, unless, as previously remarked, you live near at hand, and can catch it at its best. A common belief in regard to loch-fishing is, that the tyro and the experienced angler have nearly the same chance in fishing, -the one from the stern and the other from the bow of the same boat. Of all the absurd beliefs as to loch-fishing, this is one of the most absurd. Try it. Give the tyro either end of the boat he likes give him a cast of ally flies he may fancy, or even a cast similar to those which a crack may be using and if he catches one for every three the other has, he may consider himself very lucky. Of course there are lochs where the fish are not abundant, and a beginner may come across as many as an older fisher but we speak of lochs where there are fish to be caught, and where each has a fair chance. Again, it is said that the boatman has as much to do with catching trout in a loch as the angler. Well, we dont deny that. In an untried loch it is necessary to have the guidance of a good boatman but the same argument holds good as to stream-fishing...

Projective Geometry

Author: Olive Whicher
ISBN: 9781855843790
Release Date: 2013-07-01
Genre: Mathematics

Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being.

Symmetry and Pattern in Projective Geometry

Author: Eric Lord
Publisher: Springer Science & Business Media
ISBN: 9781447146315
Release Date: 2012-12-14
Genre: Mathematics

Symmetry and Pattern in Projective Geometry is a self-contained study of projective geometry which compares and contrasts the analytic and axiomatic methods. The analytic approach is based on homogeneous coordinates, and brief introductions to Plücker coordinates and Grassmann coordinates are presented. This book looks carefully at linear, quadratic, cubic and quartic figures in two, three and higher dimensions. It deals at length with the extensions and consequences of basic theorems such as those of Pappus and Desargues. The emphasis throughout is on special configurations that have particularly interesting symmetry properties. The intricate and novel ideas of ‘Donald’ Coxeter, who is considered one of the great geometers of the twentieth century, are also discussed throughout the text. The book concludes with a useful analysis of finite geometries and a description of some of the remarkable configurations discovered by Coxeter. This book will be appreciated by mathematics students and those wishing to learn more about the subject of geometry. It makes accessible subjects and theorems which are often considered quite complicated and presents them in an easy-to-read and enjoyable manner.

Projective Geometry

Author: T. Ewan Faulkner
Publisher: Courier Corporation
ISBN: 9780486154893
Release Date: 2013-02-20
Genre: Mathematics

Highlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.

Affine and Projective Geometry

Author: M. K. Bennett
Publisher: John Wiley & Sons
ISBN: 9781118030820
Release Date: 2011-02-14
Genre: Mathematics

An important new perspective on AFFINE AND PROJECTIVE GEOMETRY This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory, and the book culminates with the fundamental theorem of projective geometry. While emphasizing affine geometry and its basis in Euclidean concepts, the book: * Builds an appreciation of the geometric nature of linear algebra * Expands students' understanding of abstract algebra with its nontraditional, geometry-driven approach * Demonstrates how one branch of mathematics can be used to prove theorems in another * Provides opportunities for further investigation of mathematics by various means, including historical references at the ends of chapters Throughout, the text explores geometry's correlation to algebra in ways that are meant to foster inquiry and develop mathematical insights whether or not one has a background in algebra. The insight offered is particularly important for prospective secondary teachers who must major in the subject they teach to fulfill the licensing requirements of many states. Affine and Projective Geometry's broad scope and its communicative tone make it an ideal choice for all students and professionals who would like to further their understanding of things mathematical.

Oriented Projective Geometry

Author: Jorge Stolfi
Publisher: Academic Press
ISBN: 9781483265193
Release Date: 2014-05-10
Genre: Mathematics

Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.