Introductory Adaptive Trial Designs

Author: Mark Chang
Publisher: CRC Press
ISBN: 9781498717472
Release Date: 2015-05-21
Genre: Mathematics

All the Essentials to Start Using Adaptive Designs in No Time Compared to traditional clinical trial designs, adaptive designs often lead to increased success rates in drug development at reduced costs and time. Introductory Adaptive Trial Designs: A Practical Guide with R motivates newcomers to quickly and easily grasp the essence of adaptive designs as well as the foundations of adaptive design methods. The book reduces the mathematics to a minimum and makes the material as practical as possible. Instead of providing general, black-box commercial software packages, the author includes open-source R functions that enable readers to better understand the algorithms and customize the designs to meet their needs. Readers can run the simulations for all the examples and change the input parameters to see how each input parameter affects the simulation outcomes or design operating characteristics. Taking a learning-by-doing approach, this tutorial-style book guides readers on planning and executing various types of adaptive designs. It helps them develop the skills to begin using the designs immediately.

Bayesian Adaptive Methods for Clinical Trials

Author: Scott M. Berry
Publisher: CRC Press
ISBN: 1439825513
Release Date: 2010-07-19
Genre: Mathematics

Already popular in the analysis of medical device trials, adaptive Bayesian designs are increasingly being used in drug development for a wide variety of diseases and conditions, from Alzheimer’s disease and multiple sclerosis to obesity, diabetes, hepatitis C, and HIV. Written by leading pioneers of Bayesian clinical trial designs, Bayesian Adaptive Methods for Clinical Trials explores the growing role of Bayesian thinking in the rapidly changing world of clinical trial analysis. The book first summarizes the current state of clinical trial design and analysis and introduces the main ideas and potential benefits of a Bayesian alternative. It then gives an overview of basic Bayesian methodological and computational tools needed for Bayesian clinical trials. With a focus on Bayesian designs that achieve good power and Type I error, the next chapters present Bayesian tools useful in early (Phase I) and middle (Phase II) clinical trials as well as two recent Bayesian adaptive Phase II studies: the BATTLE and ISPY-2 trials. In the following chapter on late (Phase III) studies, the authors emphasize modern adaptive methods and seamless Phase II–III trials for maximizing information usage and minimizing trial duration. They also describe a case study of a recently approved medical device to treat atrial fibrillation. The concluding chapter covers key special topics, such as the proper use of historical data, equivalence studies, and subgroup analysis. For readers involved in clinical trials research, this book significantly updates and expands their statistical toolkits. The authors provide many detailed examples drawing on real data sets. The R and WinBUGS codes used throughout are available on supporting websites. Scott Berry talks about the book on the CRC Press YouTube Channel.

Adaptive Design Theory and Implementation Using SAS and R Second Edition

Author: Mark Chang
Publisher: CRC Press
ISBN: 9781482256604
Release Date: 2014-12-01
Genre: Mathematics

Get Up to Speed on Many Types of Adaptive Designs Since the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the use of various adaptive design methods in clinical trials. New to the Second Edition Twelve new chapters covering blinded and semi-blinded sample size reestimation design, pick-the-winners design, biomarker-informed adaptive design, Bayesian designs, adaptive multiregional trial design, SAS and R for group sequential design, and much more More analytical methods for K-stage adaptive designs, multiple-endpoint adaptive design, survival modeling, and adaptive treatment switching New material on sequential parallel designs with rerandomization and the skeleton approach in adaptive dose-escalation trials Twenty new SAS macros and R functions Enhanced end-of-chapter problems that give readers hands-on practice addressing issues encountered in designing real-life adaptive trials Covering even more adaptive designs, this book provides biostatisticians, clinical scientists, and regulatory reviewers with up-to-date details on this innovative area in pharmaceutical research and development. Practitioners will be able to improve the efficiency of their trial design, thereby reducing the time and cost of drug development.

Analyzing Longitudinal Clinical Trial Data

Author: Craig Mallinckrodt
Publisher: CRC Press
ISBN: 9781351737685
Release Date: 2016-12-12
Genre: Mathematics

Analyzing Longitudinal Clinical Trial Data: A Practical Guide provide practical and easy to implement approaches for bringing the latest theory on analysis of longitudinal clinical trial data into routine practice.?This book, with its example-oriented approach that includes numerous SAS and R code fragments, is an essential resource for statisticians and graduate students specializing in medical research. The authors provide clear descriptions of the relevant statistical theory and illustrate practical considerations for modeling longitudinal data. Topics covered include choice of endpoint and statistical test; modeling means and the correlations between repeated measurements; accounting for covariates; modeling categorical data; model verification; methods for incomplete (missing) data that includes the latest developments in sensitivity analyses, along with approaches for and issues in choosing estimands; and means for preventing missing data. Each chapter stands alone in its coverage of a topic. The concluding chapters provide detailed advice on how to integrate these independent topics into an over-arching study development process and statistical analysis plan.

Introduction to Statistical Methods for Clinical Trials

Author: Thomas D. Cook
Publisher: CRC Press
ISBN: 9781584880271
Release Date: 2007-11-19
Genre: Mathematics

Clinical trials have become essential research tools for evaluating the benefits and risks of new interventions for the treatment and prevention of diseases, from cardiovascular disease to cancer to AIDS. Based on the authors’ collective experiences in this field, Introduction to Statistical Methods for Clinical Trials presents various statistical topics relevant to the design, monitoring, and analysis of a clinical trial. After reviewing the history, ethics, protocol, and regulatory issues of clinical trials, the book provides guidelines for formulating primary and secondary questions and translating clinical questions into statistical ones. It examines designs used in clinical trials, presents methods for determining sample size, and introduces constrained randomization procedures. The authors also discuss how various types of data must be collected to answer key questions in a trial. In addition, they explore common analysis methods, describe statistical methods that determine what an emerging trend represents, and present issues that arise in the analysis of data. The book concludes with suggestions for reporting trial results that are consistent with universal guidelines recommended by medical journals. Developed from a course taught at the University of Wisconsin for the past 25 years, this textbook provides a solid understanding of the statistical approaches used in the design, conduct, and analysis of clinical trials.

Clinical Trial Data Analysis Using R and SAS

Author: Ding-Geng (Din) Chen
Publisher: CRC Press
ISBN: 9781351651141
Release Date: 2017-06-01
Genre: Mathematics

Review of the First Edition "The goal of this book, as stated by the authors, is to fill the knowledge gap that exists between developed statistical methods and the applications of these methods. Overall, this book achieves the goal successfully and does a nice job. I would highly recommend it ...The example-based approach is easy to follow and makes the book a very helpful desktop reference for many biostatistics methods." —Journal of Statistical Software Clinical Trial Data Analysis Using R and SAS, Second Edition provides a thorough presentation of biostatistical analyses of clinical trial data with step-by-step implementations using R and SAS. The book’s practical, detailed approach draws on the authors’ 30 years’ experience in biostatistical research and clinical development. The authors develop step-by-step analysis code using appropriate R packages and functions and SAS PROCS, which enables readers to gain an understanding of the analysis methods and R and SAS implementation so that they can use these two popular software packages to analyze their own clinical trial data. What’s New in the Second Edition Adds SAS programs along with the R programs for clinical trial data analysis. Updates all the statistical analysis with updated R packages. Includes correlated data analysis with multivariate analysis of variance. Applies R and SAS to clinical trial data from hypertension, duodenal ulcer, beta blockers, familial andenomatous polyposis, and breast cancer trials. Covers the biostatistical aspects of various clinical trials, including treatment comparisons, time-to-event endpoints, longitudinal clinical trials, and bioequivalence trials.

Adaptive Design Methods in Clinical Trials Second Edition

Author: Shein-Chung Chow
Publisher: CRC Press
ISBN: 9781439839881
Release Date: 2011-12-01
Genre: Mathematics

With new statistical and scientific issues arising in adaptive clinical trial design, including the U.S. FDA’s recent draft guidance, a new edition of one of the first books on the topic is needed. Adaptive Design Methods in Clinical Trials, Second Edition reflects recent developments and regulatory positions on the use of adaptive designs in clinical trials. It unifies the vast and continuously growing literature and research activities on regulatory requirements, scientific and practical issues, and statistical methodology. New to the Second Edition Along with revisions throughout the text, this edition significantly updates the chapters on protocol amendment and clinical trial simulation to incorporate the latest changes. It also includes five entirely new chapters on two-stage adaptive design, biomarker adaptive trials, target clinical trials, sample size and power estimation, and regulatory perspectives. Following in the tradition of its acclaimed predecessor, this second edition continues to offer an up-to-date resource for clinical scientists and researchers in academia, regulatory agencies, and the pharmaceutical industry. Written in an intuitive style at a basic mathematical and statistical level, the book maintains its practical approach with an emphasis on concepts via numerous examples and illustrations.

Introduction to Randomized Controlled Clinical Trials Second Edition

Author: John N.S. Matthews
Publisher: CRC Press
ISBN: 9781420011302
Release Date: 2006-06-26
Genre: Mathematics

Evidence from randomized controlled clinical trials is widely accepted as the only sound basis for assessing the efficacy of new medical treatments. Statistical methods play a key role in all stages of these trials, including their justification, design, and analysis. This second edition of Introduction to Randomized Controlled Clinical Trials provides a concise presentation of the principles applied in this area. It details the concepts behind randomization and methods for designing and analyzing trials and also includes information on meta-analysis and specialized designs, such as cross-over trials, cluster-randomized designs, and equivalence studies. This latest edition features new and revised references, examples, exercises, and a new chapter dedicated to binary outcomes and survival analysis. It also presents numerous examples taken from the medical literature, contains exercises at the end of each chapter, and offers solutions in an appendix. The author uses Minitab and R software throughout the text for implementing the methods that are presented. Comprehensive and accessible, Introduction to Randomized Controlled Clinical Trials is well-suited for those familiar with elementary statistical ideas and methods who want to further their knowledge of the subject.

Fundamental Concepts for New Clinical Trialists

Author: Scott Evans
Publisher: CRC Press
ISBN: 9781498767101
Release Date: 2015-11-04
Genre: Mathematics

Fundamental Concepts for New Clinical Trialists describes the core scientific concepts of designing, data monitoring, analyzing, and reporting clinical trials as well as the practical aspects of trials not typically discussed in statistical methodology textbooks. The first section of the book provides background information about clinical trials. It defines and compares clinical trials to other types of research studies and discusses clinical trial phases, registration, the protocol document, ethical issues, product development, and regulatory processes. It also includes a special chapter outlining the valuable attributes that statisticians can develop to maximize their contributions to a clinical trial. The second section examines scientific issues faced in each progressive step of a clinical trial. It covers issues in trial design, such as randomization, blinding, control-group selection, endpoint selection, superiority versus noninferiority, and parallel group versus crossover designs; data monitoring; analyses of efficacy, safety, and benefit-risk; and the reporting/publication of clinical trial results. As clinical trials remain the gold standard research studies for evaluating the effects of a medical intervention, newcomers to the field must have a fundamental understanding of the concepts to tackle real-world issues in all stages of trials. Drawing on their experiences in academia and industry, the authors provide a foundation for understanding the fundamental concepts necessary for working in clinical trials.

Sample Sizes for Clinical Trials

Author: Steven A. Julious
Publisher: CRC Press
ISBN: 1584887400
Release Date: 2009-08-26
Genre: Mathematics

Drawing on various real-world applications, Sample Sizes for Clinical Trials takes readers through the process of calculating sample sizes for many types of clinical trials. It provides descriptions of the calculations with a practical emphasis. Focusing on normal, binary, ordinal, and survival data, the book explores a range of trials, including superiority, equivalence, non-inferiority, bioequivalence, and precision for both parallel group and crossover designs. The author discusses how trial objectives impact the study design with respect to the derivation of formulae for sample size calculations. He uses real-life studies throughout to show how the concepts and calculations can be employed. This work underscores the importance of sample size calculation in the design of a clinical trial. With useful calculation tables throughout, it enables readers to quickly find an appropriate formula, formula application, and associated worked example. Watch the author speak about this book at JSM 2012 in San Diego.

Sample Size Calculations in Clinical Research Third Edition

Author: Shein-Chung Chow
Publisher: CRC Press
ISBN: 9781351727112
Release Date: 2017-08-15
Genre: Mathematics

Praise for the Second Edition: "... this is a useful, comprehensive compendium of almost every possible sample size formula. The strong organization and carefully defined formulae will aid any researcher designing a study." -Biometrics "This impressive book contains formulae for computing sample size in a wide range of settings. One-sample studies and two-sample comparisons for quantitative, binary, and time-to-event outcomes are covered comprehensively, with separate sample size formulae for testing equality, non-inferiority, and equivalence. Many less familiar topics are also covered ..." – Journal of the Royal Statistical Society Sample Size Calculations in Clinical Research, Third Edition presents statistical procedures for performing sample size calculations during various phases of clinical research and development. A comprehensive and unified presentation of statistical concepts and practical applications, this book includes a well-balanced summary of current and emerging clinical issues, regulatory requirements, and recently developed statistical methodologies for sample size calculation. Features: Compares the relative merits and disadvantages of statistical methods for sample size calculations Explains how the formulae and procedures for sample size calculations can be used in a variety of clinical research and development stages Presents real-world examples from several therapeutic areas, including cardiovascular medicine, the central nervous system, anti-infective medicine, oncology, and women’s health Provides sample size calculations for dose response studies, microarray studies, and Bayesian approaches This new edition is updated throughout, includes many new sections, and five new chapters on emerging topics: two stage seamless adaptive designs, cluster randomized trial design, zero-inflated Poisson distribution, clinical trials with extremely low incidence rates, and clinical trial simulation. ?

Cluster Randomised Trials Second Edition

Author: Richard J. Hayes
Publisher: CRC Press
ISBN: 9781315353234
Release Date: 2017-07-06
Genre: Mathematics

Cluster Randomised Trials, Second Edition discusses the design, conduct, and analysis of trials that randomise groups of individuals to different treatments. It explores the advantages of cluster randomisation, with special attention given to evaluating the effects of interventions against infectious diseases. Avoiding unnecessary mathematical detail, the book covers basic concepts underlying the use of cluster randomisation, such as direct, indirect, and total effects. In the time since the publication of the first edition, the use of cluster randomised trials (CRTs) has increased substantially, which is reflected in the updates to this edition. There are greatly expanded sections on randomisation, sample size estimation, and alternative designs, including new material on stepped wedge designs. There is a new section on handling ordinal outcome data, and an appendix with descriptions and/or generating code of the example data sets. Although the book mainly focuses on medical and public health applications, it shows that the rigorous evidence of intervention effects provided by CRTs has the potential to inform public policy in a wide range of other areas. The book encourages readers to apply the methods to their own trials, reproduce the analyses presented, and explore alternative approaches.

Handbook of Methods for Designing Monitoring and Analyzing Dose Finding Trials

Author: John O'Quigley
Publisher: CRC Press
ISBN: 9781351648028
Release Date: 2017-04-27
Genre: Mathematics

Handbook of Methods for Designing, Monitoring, and Analyzing Dose-Finding Trials gives a thorough presentation of state-of-the-art methods for early phase clinical trials. The methodology of clinical trials has advanced greatly over the last 20 years and, arguably, nowhere greater than that of early phase studies. The need to accelerate drug development in a rapidly evolving context of targeted therapies, immunotherapy, combination treatments and complex group structures has provided the stimulus to these advances. Typically, we deal with very small samples, sequential methods that need to be efficient, while, at the same time adhering to ethical principles due to the involvement of human subjects. Statistical inference is difficult since the standard techniques of maximum likelihood do not usually apply as a result of model misspecification and parameter estimates lying on the boundary of the parameter space. Bayesian methods play an important part in overcoming these difficulties, but nonetheless, require special consideration in this particular context. The purpose of this handbook is to provide an expanded summary of the field as it stands and also, through discussion, provide insights into the thinking of leaders in the field as to the potential developments of the years ahead. With this goal in mind we present: An introduction to the field for graduate students and novices A basis for more established researchers from which to build A collection of material for an advanced course in early phase clinical trials A comprehensive guide to available methodology for practicing statisticians on the design and analysis of dose-finding experiments An extensive guide for the multiple comparison and modeling (MCP-Mod) dose-finding approach, adaptive two-stage designs for dose finding, as well as dose–time–response models and multiple testing in the context of confirmatory dose-finding studies.? John O’Quigley is a professor of mathematics and research director at the French National Institute for Health and Medical Research based at the Faculty of Mathematics, University Pierre and Marie Curie in Paris, France. He is author of Proportional Hazards Regression and has published extensively in the field of dose finding. Alexia Iasonos is an associate attending biostatistician at the Memorial Sloan Kettering Cancer Center in New York. She has over one hundred publications in the leading statistical and clinical journals on the methodology and design of early phase clinical trials. Dr. Iasonos has wide experience in the actual implementation of model based early phase trials and has given courses in scientific meetings internationally. Björn Bornkamp is a statistical methodologist at Novartis in Basel, Switzerland, researching and implementing dose-finding designs in Phase II clinical trials. He is one of the co-developers of the MCP-Mod methodology for dose finding and main author of the DoseFinding R package. He has published numerous papers on dose finding, nonlinear models and Bayesian statistics, and in 2013 won the Royal Statistical Society award for statistical excellence in the pharmaceutical industry. ? ?

Group Sequential and Confirmatory Adaptive Designs in Clinical Trials

Author: Gernot Wassmer
Publisher: Springer
ISBN: 9783319325620
Release Date: 2016-07-04
Genre: Medical

This book provides an up-to-date review of the general principles of and techniques for confirmatory adaptive designs. Confirmatory adaptive designs are a generalization of group sequential designs. With these designs, interim analyses are performed in order to stop the trial prematurely under control of the Type I error rate. In adaptive designs, it is also permissible to perform a data-driven change of relevant aspects of the study design at interim stages. This includes, for example, a sample-size reassessment, a treatment-arm selection or a selection of a pre-specified sub-population. Essentially, this adaptive methodology was introduced in the 1990s. Since then, it has become popular and the object of intense discussion and still represents a rapidly growing field of statistical research. This book describes adaptive design methodology at an elementary level, while also considering designing and planning issues as well as methods for analyzing an adaptively planned trial. This includes estimation methods and methods for the determination of an overall p-value. Part I of the book provides the group sequential methods that are necessary for understanding and applying the adaptive design methodology supplied in Parts II and III of the book. The book contains many examples that illustrate use of the methods for practical application. The book is primarily written for applied statisticians from academia and industry who are interested in confirmatory adaptive designs. It is assumed that readers are familiar with the basic principles of descriptive statistics, parameter estimation and statistical testing. This book will also be suitable for an advanced statistical course for applied statisticians or clinicians with a sound statistical background.

Data and Safety Monitoring Committees in Clinical Trials

Author: Jay Herson
Publisher: CRC Press
ISBN: 1420070398
Release Date: 2009-03-13
Genre: Medical

Focusing on the practical clinical and statistical issues that arise in pharmaceutical industry trials, this book summarizes the author’s experience in serving on many data monitoring committees (DMCs) and in heading up a contract research organization that provided statistical support to nearly seventy-five DMCs. It explains the difference in DMC operations between the pharmaceutical industry and National Institutes of Health (NIH)-sponsored trials. Leading you through the types of reports for adverse events and lab values, the author presents the statistical requirements of data monitoring committees and gives advice on how statisticians can best interact with physician members of these committees. He also shows how physicians think differently about safety data than statisticians, proving that both views are needed.