Author: Anatoli Andrianov
Publisher: Springer Science & Business Media
ISBN: 9780387787534
Release Date: 2010-03-17
Genre: Mathematics

Several years ago I was invited to an American university to give one-term graduate course on Siegel modular forms, Hecke operators, and related zeta functions. The idea to present in a concise but basically complete and self-contained form an int- duction to an important and developing area based partly on my own work attracted me. I accepted the invitation and started to prepare the course. Unfortunately, the visit was not realized. But the idea of such a course continued to be alive till after a number of years this book was ?nally completed. I hope that this short book will serve to attract young researchers to this beautiful ?eld, and that it will simplify and make more pleasant the initial steps. No special knowledge is presupposed for reading this book beyond standard courses in algebra and calculus (one and several variables), although some skill in working with mathematical texts would be helpful. The reader will judge whether the result was worth the effort. Dedications. The ideas of Goro Shimura exerted a deep in?uence on the number theory of the second half of the twentieth century in general and on the author’s formation in particular. When Andre ` Weil was signing a copy of his “Basic Number Theory” to my son, he wrote in Russian, ”To Fedor Anatolievich hoping that he will become a number theoretist”. Fedor has chosen computer science. Now I pass on the idea to Fedor’s daughter, Alexandra Fedorovna.

Author: Jan Hendrik Bruinier
Publisher: Springer Science & Business Media
ISBN: 3540741194
Release Date: 2008-02-10
Genre: Mathematics

This book grew out of three series of lectures given at the summer school on "Modular Forms and their Applications" at the Sophus Lie Conference Center in Nordfjordeid in June 2004. The first series treats the classical one-variable theory of elliptic modular forms. The second series presents the theory of Hilbert modular forms in two variables and Hilbert modular surfaces. The third series gives an introduction to Siegel modular forms and discusses a conjecture by Harder. It also contains Harder's original manuscript with the conjecture. Each part treats a number of beautiful applications.

These six volumes include approximately 20,000 reviews of items in number theory that appeared in Mathematical Reviews between 1984 and 1996. This is the third such set of volumes in number theory. The first was edited by W.J. LeVeque and included reviews from 1940-1972; the second was edited by R.K. Guy and appeared in 1984.

Author: I. Moerdijk
Publisher: Cambridge University Press
ISBN: 1139438980
Release Date: 2003-09-18
Genre: Mathematics

This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an indispensable tool to study the transverse structure of foliations as well as their noncommutative geometry, while the theory of foliations has immediate applications to the Lie theory of groupoids and their infinitesimal algebroids. The book starts with a detailed presentation of the main classical theorems in the theory of foliations then proceeds to Molino's theory, Lie groupoids, constructing the holonomy groupoid of a foliation and finally Lie algebroids. Among other things, the authors discuss to what extent Lie's theory for Lie groups and Lie algebras holds in the more general context of groupoids and algebroids. Based on the authors' extensive teaching experience, this book contains numerous examples and exercises making it ideal for graduate students and their instructors.