Learning pandas

Author: Michael Heydt
Publisher: Packt Publishing Ltd
ISBN: 9781783985135
Release Date: 2015-04-16
Genre: Computers

If you are a Python programmer who wants to get started with performing data analysis using pandas and Python, this is the book for you. Some experience with statistical analysis would be helpful but is not mandatory.

Python for Data Analysis

Author: Wes McKinney
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449319793
Release Date: 2012-10-22
Genre: Computers

Presents case studies and instructions on how to solve data analysis problems using Python.

Pandas for Everyone

Author: Daniel Y. Chen
Publisher: Addison-Wesley Professional
ISBN: 0134546938
Release Date: 2017-01-10
Genre: Computers

This tutorial teaches everything you need to get started with Python programming for the fast-growing field of data analysis. Daniel Chen tightly links each new concept with easy-to-apply, relevant examples from modern data analysis. Unlike other beginner's books, this guide helps today's newcomers learn both Python and its popular Pandas data science toolset in the context of tasks they'll really want to perform. Following the proven Software Carpentry approach to teaching programming, Chen introduces each concept with a simple motivating example, slowly offering deeper insights and expanding your ability to handle concrete tasks. Each chapter is illuminated with a concept map: an intuitive visual index of what you'll learn -- and an easy way to refer back to what you've already learned. An extensive set of easy-to-read appendices help you fill knowledge gaps wherever they may exist. Coverage includes: Setting up your Python and Pandas environment Getting started with Pandas dataframes Using dataframes to calculate and perform basic statistical tasks Plotting in Matplotlib Cleaning data, reshaping dataframes, handling missing values, working with dates, and more Building basic data analytics models Applying machine learning techniques: both supervised and unsupervised Creating reproducible documents using literate programming techniques

Treading on Python Volume 1

Author: Matt Harrison
Publisher: Matt Harrison
ISBN: 9781475266412
Release Date: 2012-05-23
Genre: Computers

Treading on Python is designed to bring developers and others who are anxious to learn Python up to speed quickly. Not only does it teach the basics of syntax, but it condenses years of experience. You will learn warts, gotchas, best practices and hints that have been gleaned through the years in days. You will hit the ground running and running in the right way.

Data Visualization with Python and JavaScript

Author: Kyran Dale
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491920541
Release Date: 2016-06-30
Genre: Computers

Learn how to turn raw data into rich, interactive web visualizations with the powerful combination of Python and JavaScript. With this hands-on guide, author Kyran Dale teaches you how build a basic dataviz toolchain with best-of-breed Python and JavaScript libraries—including Scrapy, Matplotlib, Pandas, Flask, and D3—for crafting engaging, browser-based visualizations. As a working example, throughout the book Dale walks you through transforming Wikipedia’s table-based list of Nobel Prize winners into an interactive visualization. You’ll examine steps along the entire toolchain, from scraping, cleaning, exploring, and delivering data to building the visualization with JavaScript’s D3 library. If you’re ready to create your own web-based data visualizations—and know either Python or JavaScript— this is the book for you. Learn how to manipulate data with Python Understand the commonalities between Python and JavaScript Extract information from websites by using Python’s web-scraping tools, BeautifulSoup and Scrapy Clean and explore data with Python’s Pandas, Matplotlib, and Numpy libraries Serve data and create RESTful web APIs with Python’s Flask framework Create engaging, interactive web visualizations with JavaScript’s D3 library

Python Data Science Handbook

Author: Jake VanderPlas
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491912133
Release Date: 2016-11-21
Genre: Computers

For many researchers, Python is a first-class tool mainly because of its libraries for storing, manipulating, and gaining insight from data. Several resources exist for individual pieces of this data science stack, but only with the Python Data Science Handbook do you get them all—IPython, NumPy, Pandas, Matplotlib, Scikit-Learn, and other related tools. Working scientists and data crunchers familiar with reading and writing Python code will find this comprehensive desk reference ideal for tackling day-to-day issues: manipulating, transforming, and cleaning data; visualizing different types of data; and using data to build statistical or machine learning models. Quite simply, this is the must-have reference for scientific computing in Python. With this handbook, you’ll learn how to use: IPython and Jupyter: provide computational environments for data scientists using Python NumPy: includes the ndarray for efficient storage and manipulation of dense data arrays in Python Pandas: features the DataFrame for efficient storage and manipulation of labeled/columnar data in Python Matplotlib: includes capabilities for a flexible range of data visualizations in Python Scikit-Learn: for efficient and clean Python implementations of the most important and established machine learning algorithms

Bad Data Handbook

Author: Q. Ethan McCallum
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449324971
Release Date: 2012-11-07
Genre: Computers

What is bad data? Some people consider it a technical phenomenon, like missing values or malformed records, but bad data includes a lot more. In this handbook, data expert Q. Ethan McCallum has gathered 19 colleagues from every corner of the data arena to reveal how they’ve recovered from nasty data problems. From cranky storage to poor representation to misguided policy, there are many paths to bad data. Bottom line? Bad data is data that gets in the way. This book explains effective ways to get around it. Among the many topics covered, you’ll discover how to: Test drive your data to see if it’s ready for analysis Work spreadsheet data into a usable form Handle encoding problems that lurk in text data Develop a successful web-scraping effort Use NLP tools to reveal the real sentiment of online reviews Address cloud computing issues that can impact your analysis effort Avoid policies that create data analysis roadblocks Take a systematic approach to data quality analysis

Practical Data Science Cookbook

Author: Tony Ojeda
Publisher: Packt Publishing Ltd
ISBN: 9781783980253
Release Date: 2014-09-25
Genre: Computers

If you are an aspiring data scientist who wants to learn data science and numerical programming concepts through hands-on, real-world project examples, this is the book for you. Whether you are brand new to data science or you are a seasoned expert, you will benefit from learning about the structure of data science projects, the steps in the data science pipeline, and the programming examples presented in this book. Since the book is formatted to walk you through the projects with examples and explanations along the way, no prior programming experience is required.

Effective Computation in Physics

Author: Anthony Scopatz
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491901588
Release Date: 2015-06-25
Genre: Science

More physicists today are taking on the role of software developer as part of their research, but software development isn’t always easy or obvious, even for physicists. This practical book teaches essential software development skills to help you automate and accomplish nearly any aspect of research in a physics-based field. Written by two PhDs in nuclear engineering, this book includes practical examples drawn from a working knowledge of physics concepts. You’ll learn how to use the Python programming language to perform everything from collecting and analyzing data to building software and publishing your results. In four parts, this book includes: Getting Started: Jump into Python, the command line, data containers, functions, flow control and logic, and classes and objects Getting It Done: Learn about regular expressions, analysis and visualization, NumPy, storing data in files and HDF5, important data structures in physics, computing in parallel, and deploying software Getting It Right: Build pipelines and software, learn to use local and remote version control, and debug and test your code Getting It Out There: Document your code, process and publish your findings, and collaborate efficiently; dive into software licenses, ownership, and copyright procedures

Mastering Natural Language Processing with Python

Author: Deepti Chopra
Publisher: Packt Publishing Ltd
ISBN: 9781783989058
Release Date: 2016-06-10
Genre: Computers

Maximize your NLP capabilities while creating amazing NLP projects in Python About This Book Learn to implement various NLP tasks in Python Gain insights into the current and budding research topics of NLP This is a comprehensive step-by-step guide to help students and researchers create their own projects based on real-life applications Who This Book Is For This book is for intermediate level developers in NLP with a reasonable knowledge level and understanding of Python. What You Will Learn Implement string matching algorithms and normalization techniques Implement statistical language modeling techniques Get an insight into developing a stemmer, lemmatizer, morphological analyzer, and morphological generator Develop a search engine and implement POS tagging concepts and statistical modeling concepts involving the n gram approach Familiarize yourself with concepts such as the Treebank construct, CFG construction, the CYK Chart Parsing algorithm, and the Earley Chart Parsing algorithm Develop an NER-based system and understand and apply the concepts of sentiment analysis Understand and implement the concepts of Information Retrieval and text summarization Develop a Discourse Analysis System and Anaphora Resolution based system In Detail Natural Language Processing is one of the fields of computational linguistics and artificial intelligence that is concerned with human-computer interaction. It provides a seamless interaction between computers and human beings and gives computers the ability to understand human speech with the help of machine learning. This book will give you expertise on how to employ various NLP tasks in Python, giving you an insight into the best practices when designing and building NLP-based applications using Python. It will help you become an expert in no time and assist you in creating your own NLP projects using NLTK. You will sequentially be guided through applying machine learning tools to develop various models. We'll give you clarity on how to create training data and how to implement major NLP applications such as Named Entity Recognition, Question Answering System, Discourse Analysis, Transliteration, Word Sense disambiguation, Information Retrieval, Sentiment Analysis, Text Summarization, and Anaphora Resolution. Style and approach This is an easy-to-follow guide, full of hands-on examples of real-world tasks. Each topic is explained and placed in context, and for the more inquisitive, there are more details of the concepts used.

Data Driven Security

Author: Jay Jacobs
Publisher: John Wiley & Sons
ISBN: 9781118793824
Release Date: 2014-01-24
Genre: Computers

Uncover hidden patterns of data and respond with countermeasures Security professionals need all the tools at their disposal to increase their visibility in order to prevent security breaches and attacks. This careful guide explores two of the most powerful ? data analysis and visualization. You'll soon understand how to harness and wield data, from collection and storage to management and analysis as well as visualization and presentation. Using a hands-on approach with real-world examples, this book shows you how to gather feedback, measure the effectiveness of your security methods, and make better decisions. Everything in this book will have practical application for information security professionals. Helps IT and security professionals understand and use data, so they can thwart attacks and understand and visualize vulnerabilities in their networks Includes more than a dozen real-world examples and hands-on exercises that demonstrate how to analyze security data and intelligence and translate that information into visualizations that make plain how to prevent attacks Covers topics such as how to acquire and prepare security data, use simple statistical methods to detect malware, predict rogue behavior, correlate security events, and more Written by a team of well-known experts in the field of security and data analysis Lock down your networks, prevent hacks, and thwart malware by improving visibility into the environment, all through the power of data and Security Using Data Analysis, Visualization, and Dashboards.

Data Science from Scratch

Author: Joel Grus
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491904404
Release Date: 2015-04-14
Genre: BUSINESS & ECONOMICS

Data science libraries, frameworks, modules, and toolkits are great for doing data science, but they’re also a good way to dive into the discipline without actually understanding data science. In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Data Science For Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 9781119327653
Release Date: 2017-02-21
Genre: Computers

Your ticket to breaking into the field of data science! Jobs in data science are projected to outpace the number of people with data science skills—making those with the knowledge to fill a data science position a hot commodity in the coming years. Data Science For Dummies is the perfect starting point for IT professionals and students interested in making sense of an organization's massive data sets and applying their findings to real-world business scenarios. From uncovering rich data sources to managing large amounts of data within hardware and software limitations, ensuring consistency in reporting, merging various data sources, and beyond, you'll develop the know-how you need to effectively interpret data and tell a story that can be understood by anyone in your organization. Provides a background in data science fundamentals and preparing your data for analysis Details different data visualization techniques that can be used to showcase and summarize your data Explains both supervised and unsupervised machine learning, including regression, model validation, and clustering techniques Includes coverage of big data processing tools like MapReduce, Hadoop, Dremel, Storm, and Spark It's a big, big data world out there—let Data Science For Dummies help you harness its power and gain a competitive edge for your organization.