Author: David Poole
Publisher: Cengage Learning
ISBN: 9781285463247
Release Date: 2014-03-19
Genre: Mathematics

David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Author: David Poole
Publisher: Cengage Learning
ISBN: 9781285982830
Release Date: 2014-03-19
Genre: Mathematics

David Poole's innovative LINEAR ALGEBRA: A MODERN INTRODUCTION, 4e emphasizes a vectors approach and better prepares students to make the transition from computational to theoretical mathematics. Balancing theory and applications, the book is written in a conversational style and combines a traditional presentation with a focus on student-centered learning. Theoretical, computational, and applied topics are presented in a flexible yet integrated way. Stressing geometric understanding before computational techniques, vectors and vector geometry are introduced early to help students visualize concepts and develop mathematical maturity for abstract thinking. Additionally, the book includes ample applications drawn from a variety of disciplines, which reinforce the fact that linear algebra is a valuable tool for modeling real-life problems. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Author: David Poole
Publisher: Cengage Learning
ISBN: 9780538735452
Release Date: 2010-05-25
Genre: Mathematics

David Poole’s innovative book emphasizes vectors and geometric intuition from the start and better prepares students to make the transition from the computational aspects of the course to the theoretical. Designed for a one- or two-semester introductory course and written in simple, mathematical English Poole focuses his approach on benefiting student visualization and connection to the material. He offers concrete examples to engage the student before presenting abstraction, and immediately follows up theoretical discussion with further examples and an array of applications from a variety of disciplines. Students from a variety of backgrounds and learning styles benefit from Poole’s practical approach, which covers vectors and vector geometry early in order to enable students to visualize the mathematics while they are doing matrix operations. With a concrete understanding of vector geometry, students are able to visualize and understand the meaning of the calculations that they will encounter and develop mathematical maturity for thinking abstractly. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Useful Concepts and Results at the Heart of Linear Algebra A one- or two-semester course for a wide variety of students at the sophomore/junior undergraduate level A Modern Introduction to Linear Algebra provides a rigorous yet accessible matrix-oriented introduction to the essential concepts of linear algebra. Concrete, easy-to-understand examples motivate the theory. The book first discusses vectors, Gaussian elimination, and reduced row echelon forms. It then offers a thorough introduction to matrix algebra, including defining the determinant naturally from the PA=LU factorization of a matrix. The author goes on to cover finite-dimensional real vector spaces, infinite-dimensional spaces, linear transformations, and complex vector spaces. The final chapter presents Hermitian and normal matrices as well as quadratic forms. Taking a computational, algebraic, and geometric approach to the subject, this book provides the foundation for later courses in higher mathematics. It also shows how linear algebra can be used in various areas of application. Although written in a "pencil and paper" manner, the text offers ample opportunities to enhance learning with calculators or computer usage. Solutions manual available for qualifying instructors

Author: Robert Rogers
Publisher: Brooks/Cole Publishing Company
ISBN: 0534998585
Release Date: 2005-02
Genre: Mathematics

By Robert Rogers of Bay State College. Provides detailed and complete solutions to the odd-numbered exercises and test questions; section and chapter summaries of symbols, definitions, and theorems; study tips and hints. Complex exercises are explored through a question-and-answer format designed to deepen understanding. Challenging and entertaining problems that further explore selected exercises are also included.

Rigorous, self-contained coverage of determinants, vectors, matrices and linear equations, quadratic forms, more. Elementary, easily readable account with numerous examples and problems at the end of each chapter.

This unique text provides students with a basic course in both calculus and analytic geometry — no competitive editions cover both topics in a single volume. Its prerequisites are minimal, and the order of its presentation promotes an intuitive approach to calculus. Algebraic concepts receive an unusually strong emphasis. Numerous exercises appear throughout the text. 1951 edition.

Author: David Poole
Publisher: Thomson Brooks/Cole
ISBN: 0538735449
Release Date: 2010
Genre: Algebras, Linear

David Poole's innovative book prepares students to make the transition from the computational aspects of the course to the theoretical by emphasizing vectors and geometric intuition from the start. Designed for a one- or two-semester introductory course and written in simple, "mathematical English" the book presents interesting examples before abstraction. This immediately follows up theoretical discussion with further examples and a variety of applications drawn from a number of disciplines, which reinforces the practical utility of the math, and helps students from a variety of backgrounds and learning styles stay connected to the concepts they are learning. Poole's approach helps students succeed in this course by learning vectors and vector geometry first in order to visualize and understand the meaning of the calculations that they will encounter and develop mathematical maturity for thinking abstractly.

Rigorous, self-contained introduction at undergraduate level covers vector spaces and linear transformations, linear equations and determinants, characteristic roots. Includes 16 sets of true-false quizzes and exercises — with worked-out solutions — a complete theory of permutations and much more.

Author: Jiří Matoušek
Publisher: American Mathematical Soc.
ISBN: 9780821849774
Release Date: 2010
Genre: Mathematics

This volume contains a collection of clever mathematical applications of linear algebra, mainly in combinatorics, geometry, and algorithms. Each chapter covers a single main result with motivation and full proof in at most ten pages and can be read independently of all other chapters (with minor exceptions), assuming only a modest background in linear algebra. The topics include a number of well-known mathematical gems, such as Hamming codes, the matrix-tree theorem, the Lovasz bound on the Shannon capacity, and a counterexample to Borsuk's conjecture, as well as other, perhaps less popular but similarly beautiful results, e.g., fast associativity testing, a lemma of Steinitz on ordering vectors, a monotonicity result for integer partitions, or a bound for set pairs via exterior products. The simpler results in the first part of the book provide ample material to liven up an undergraduate course of linear algebra. The more advanced parts can be used for a graduate course of linear-algebraic methods or for seminar presentations. Table of Contents: Fibonacci numbers, quickly; Fibonacci numbers, the formula; The clubs of Oddtown; Same-size intersections; Error-correcting codes; Odd distances; Are these distances Euclidean?; Packing complete bipartite graphs; Equiangular lines; Where is the triangle?; Checking matrix multiplication; Tiling a rectangle by squares; Three Petersens are not enough; Petersen, Hoffman-Singleton, and maybe 57; Only two distances; Covering a cube minus one vertex; Medium-size intersection is hard to avoid; On the difficulty of reducing the diameter; The end of the small coins; Walking in the yard; Counting spanning trees; In how many ways can a man tile a board?; More bricks--more walls?; Perfect matchings and determinants; Turning a ladder over a finite field; Counting compositions; Is it associative?; The secret agent and umbrella; Shannon capacity of the union: a tale of two fields; Equilateral sets; Cutting cheaply using eigenvectors; Rotating the cube; Set pairs and exterior products; Index. (STML/53)

Author: Steven Roman
Publisher: Springer Science & Business Media
ISBN: 9780387728315
Release Date: 2007-09-20
Genre: Mathematics

This graduate level textbook covers an especially broad range of topics. The book first offers a careful discussion of the basics of linear algebra. It then proceeds to a discussion of modules, emphasizing a comparison with vector spaces, and presents a thorough discussion of inner product spaces, eigenvalues, eigenvectors, and finite dimensional spectral theory, culminating in the finite dimensional spectral theorem for normal operators. The new edition has been revised and contains a chapter on the QR decomposition, singular values and pseudoinverses, and a chapter on convexity, separation and positive solutions to linear systems.

Linear algebra is the study of vector spaces and the linear maps between them. It underlies much of modern mathematics and is widely used in applications. A (Terse) Introduction to Linear Algebra is a concise presentation of the core material of the subject--those elements of linear algebra that every mathematician, and everyone who uses mathematics, should know. It goes from the notion of a finite-dimensional vector space to the canonical forms of linear operators and their matrices, and covers along the way such key topics as: systems of linear equations, linear operators and matrices, determinants, duality, and the spectral theory of operators on inner-product spaces. The last chapter offers a selection of additional topics indicating directions in which the core material can be applied. The Appendix provides all the relevant background material. Written for students with some mathematical maturity and an interest in abstraction and formal reasoning, the book is self-contained and is appropriate for an advanced undergraduate course in linear algebra.

Author: Jonathan S. Golan
Publisher: Springer Science & Business Media
ISBN: 9789400726369
Release Date: 2012-04-23
Genre: Mathematics

Linear algebra is a living, active branch of mathematics which is central to almost all other areas of mathematics, both pure and applied, as well as to computer science, to the physical, biological, and social sciences, and to engineering. It encompasses an extensive corpus of theoretical results as well as a large and rapidly-growing body of computational techniques. Unfortunately, in the past decade, the content of linear algebra courses required to complete an undergraduate degree in mathematics has been depleted to the extent that they fail to provide a sufficient theoretical or computational background. Students are not only less able to formulate or even follow mathematical proofs, they are also less able to understand the mathematics of the numerical algorithms they need for applications. Certainly, the material presented in the average undergraduate course is insufficient for graduate study. This book is intended to fill the gap which has developed by providing enough theoretical and computational material to allow the advanced undergraduate or beginning graduate student to overcome this deficiency and be able to work independently or in advanced courses. The book is intended to be used either as a self-study guide, a textbook for a course in advanced linear algebra, or as a reference book. It is also designed to prepare a student for the linear algebra portion of prelim exams or PhD qualifying exams. The volume is self-contained to the extent that it does not assume any previous formal knowledge of linear algebra, though the reader is assumed to have been exposed, at least informally, to some of the basic ideas and techniques, such as manipulation of small matrices and the solution of small systems of linear equations over the real numbers. More importantly, it assumes a seriousness of purpose, considerable motivation, and a modicum of mathematical sophistication on the part of the reader. In the latest edition, new major theorems have been added, as well as many new examples. There are over 130 additional exercises and many of the previous exercises have been revised or rewritten. In addition, a large number of additional biographical notes and thumbnail portraits of mathematicians have been included.

Author: Henry J. Ricardo
Publisher: Academic Press
ISBN: 9780080886039
Release Date: 2009-02-24
Genre: Mathematics

A Modern Introduction to Differential Equations, Second Edition, provides an introduction to the basic concepts of differential equations. The book begins by introducing the basic concepts of differential equations, focusing on the analytical, graphical, and numerical aspects of first-order equations, including slope fields and phase lines. The discussions then cover methods of solving second-order homogeneous and nonhomogeneous linear equations with constant coefficients; systems of linear differential equations; the Laplace transform and its applications to the solution of differential equations and systems of differential equations; and systems of nonlinear equations. Each chapter concludes with a summary of the important concepts in the chapter. Figures and tables are provided within sections to help students visualize or summarize concepts. The book also includes examples and exercises drawn from biology, chemistry, and economics, as well as from traditional pure mathematics, physics, and engineering. This book is designed for undergraduate students majoring in mathematics, the natural sciences, and engineering. However, students in economics, business, and the social sciences with the necessary background will also find the text useful. Student friendly readability- assessible to the average student Early introduction of qualitative and numerical methods Large number of exercises taken from biology, chemistry, economics, physics and engineering Exercises are labeled depending on difficulty/sophistication End of chapter summaries Group projects

Author: Richard O. Hill
Publisher: Academic Press
ISBN: 9781483265179
Release Date: 2014-05-10
Genre: Mathematics

Elementary Linear Algebra reviews the elementary foundations of linear algebra in a student-oriented, highly readable way. The many examples and large number and variety of exercises in each section help the student learn and understand the material. The instructor is also given flexibility by allowing the presentation of a traditional introductory linear algebra course with varying emphasis on applications or numerical considerations. In addition, the instructor can tailor coverage of several topics. Comprised of six chapters, this book first discusses Gaussian elimination and the algebra of matrices. Applications are interspersed throughout, and the problem of solving AX = B, where A is square and invertible, is tackled. The reader is then introduced to vector spaces and subspaces, linear independences, and dimension, along with rank, determinants, and the concept of inner product spaces. The final chapter deals with various topics that highlight the interaction between linear algebra and all the other branches of mathematics, including function theory, analysis, and the singular value decomposition and generalized inverses. This monograph will be a useful resource for practitioners, instructors, and students taking elementary linear algebra.