Linear and Generalized Linear Mixed Models and Their Applications

Author: Jiming Jiang
Publisher: Springer Science & Business Media
ISBN: 9780387479460
Release Date: 2007-05-30
Genre: Mathematics

This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.

Correlated Data Analysis Modeling Analytics and Applications

Author: Peter X. -K. Song
Publisher: Springer Science & Business Media
ISBN: 9780387713939
Release Date: 2007-06-30
Genre: Mathematics

This book covers recent developments in correlated data analysis. It utilizes the class of dispersion models as marginal components in the formulation of joint models for correlated data. This enables the book to cover a broader range of data types than the traditional generalized linear models. The reader is provided with a systematic treatment for the topic of estimating functions, and both generalized estimating equations (GEE) and quadratic inference functions (QIF) are studied as special cases. In addition to the discussions on marginal models and mixed-effects models, this book covers new topics on joint regression analysis based on Gaussian copulas.

Linear Mixed Models for Longitudinal Data

Author: Geert Verbeke
Publisher: Springer Science & Business Media
ISBN: 9781441903006
Release Date: 2009-05-12
Genre: Mathematics

This book provides a comprehensive treatment of linear mixed models for continuous longitudinal data. Next to model formulation, this edition puts major emphasis on exploratory data analysis for all aspects of the model, such as the marginal model, subject-specific profiles, and residual covariance structure. Further, model diagnostics and missing data receive extensive treatment. Sensitivity analysis for incomplete data is given a prominent place. Most analyses were done with the MIXED procedure of the SAS software package, but the data analyses are presented in a software-independent fashion.

Models for Discrete Longitudinal Data

Author: Geert Molenberghs
Publisher: Springer Science & Business Media
ISBN: 0387251448
Release Date: 2005-08-04
Genre: Mathematics

This book provides a comprehensive treatment on modeling approaches for non-Gaussian repeated measures, possibly subject to incompleteness. The authors begin with models for the full marginal distribution of the outcome vector. This allows model fitting to be based on maximum likelihood principles, immediately implying inferential tools for all parameters in the models. At the same time, they formulate computationally less complex alternatives, including generalized estimating equations and pseudo-likelihood methods. They then briefly introduce conditional models and move on to the random-effects family, encompassing the beta-binomial model, the probit model and, in particular the generalized linear mixed model. Several frequently used procedures for model fitting are discussed and differences between marginal models and random-effects models are given attention The authors consider a variety of extensions, such as models for multivariate longitudinal measurements, random-effects models with serial correlation, and mixed models with non-Gaussian random effects. They sketch the general principles for how to deal with the commonly encountered issue of incomplete longitudinal data. The authors critique frequently used methods and propose flexible and broadly valid methods instead, and conclude with key concepts of sensitivity analysis. Without putting too much emphasis on software, the book shows how the different approaches can be implemented within the SAS software package. The text is organized so the reader can skip the software-oriented chapters and sections without breaking the logical flow. Geert Molenberghs is Professor of Biostatistics at the Universiteit Hasselt in Belgium and has published methodological work on surrogate markers in clinical trials, categorical data, longitudinal data analysis, and the analysis of non-response in clinical and epidemiological studies. He served as Joint Editor for Applied Statistics (2001–2004) and as Associate Editor for several journals, including Biometrics and Biostatistics. He was President of the International Biometric Society (2004–2005). He was elected Fellow of the American Statistical Association and received the Guy Medal in Bronze from the Royal Statistical Society. Geert Verbeke is Professor of Biostatistics at the Biostatistical Centre of the Katholieke Universiteit Leuven in Belgium. He has published a number of methodological articles on various aspects of models for longitudinal data analyses, with particular emphasis on mixed models. Geert Verbeke is Past President of the Belgian Region of the International Biometric Society, International Program Chair for the International Biometric Conference in Montreal (2006), and Joint Editor of the Journal of the Royal Statistical Society, Series A (2005–2008). He has served as Associate Editor for several journals including Biometrics and Applied Statistics. The authors also wrote a monograph on linear mixed models for longitudinal data (Springer, 2000) and received the American Statistical Association's Excellence in Continuing Education Award, based on short courses on longitudinal and incomplete data at the Joint Statistical Meetings of 2002 and 2004.

Linear Mixed Effects Models Using R

Author: Andrzej Gałecki
Publisher: Springer Science & Business Media
ISBN: 9781461439004
Release Date: 2013-02-05
Genre: Mathematics

Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.

Plane Answers to Complex Questions

Author: Ronald Christensen
Publisher: Springer Science & Business Media
ISBN: 9781475724776
Release Date: 2013-03-09
Genre: Mathematics

The second edition of Plane Answers has many additions and a couple of deletions. New material includes additional illustrative examples in Ap pendices A and B and Chapters 2 and 3, as well as discussions of Bayesian estimation, near replicate lack of fit tests, testing the independence assump tion, testing variance components, the interblock analysis for balanced in complete block designs, nonestimable constraints, analysis of unreplicated experiments using normal plots, tensors, and properties of Kronecker prod ucts and Vee operators. The book contains an improved discussion of the relation between ANOVA and regression, and an improved presentation of general Gauss-Markov models. The primary material that has been deleted are the discussions of weighted means and of log-linear models. The mate rial on log-linear models was included in Christensen (1990b), so it became redundant here. Generally, I have tried to clean up the presentation of ideas wherever it seemed obscure to me. Much of the work on the second edition was done while on sabbatical at the University of Canterbury in Christchurch, New Zealand. I would par ticularly like to thank John Deely for arranging my sabbatical. Through their comments and criticisms, four people were particularly helpful in con structing this new edition. I would like to thank Wes Johnson, Snehalata Huzurbazar, Ron Butler, and Vance Berger.

Statistics for High Dimensional Data

Author: Peter Bühlmann
Publisher: Springer Science & Business Media
ISBN: 9783642201929
Release Date: 2011-06-08
Genre: Mathematics

Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.

Linear Models

Author: C.Radhakrishna Rao
Publisher: Springer Science & Business Media
ISBN: 9781489900241
Release Date: 2013-06-29
Genre: Mathematics

The book is based on both authors' several years of experience in teaching linear models at various levels. It gives an up-to-date account of the theory and applications of linear models. The book can be used as a text for courses in statistics at the graduate level and as an accompanying text for courses in other areas. Some of the highlights in this book are as follows. A relatively extensive chapter on matrix theory (Appendix A) provides the necessary tools for proving theorems discussed in the text and offers a selection of classical and modern algebraic results that are useful in research work in econometrics, engineering, and optimization theory. The matrix theory of the last ten years has produced a series of fundamental results about the definiteness of matrices, especially for the differences of matrices, which enable superiority comparisons of two biased estimates to be made for the first time. We have attempted to provide a unified theory of inference from linear models with minimal assumptions. Besides the usual least-squares theory, alternative methods of estimation and testing based on convex loss func tions and general estimating equations are discussed. Special emphasis is given to sensitivity analysis and model selection. A special chapter is devoted to the analysis of categorical data based on logit, loglinear, and logistic regression models. The material covered, theoretical discussion, and its practical applica tions will be useful not only to students but also to researchers and con sultants in statistics.

Bayesian and Frequentist Regression Methods

Author: Jon Wakefield
Publisher: Springer Science & Business Media
ISBN: 9781441909251
Release Date: 2013-01-04
Genre: Mathematics

Bayesian and Frequentist Regression Methods provides a modern account of both Bayesian and frequentist methods of regression analysis. Many texts cover one or the other of the approaches, but this is the most comprehensive combination of Bayesian and frequentist methods that exists in one place. The two philosophical approaches to regression methodology are featured here as complementary techniques, with theory and data analysis providing supplementary components of the discussion. In particular, methods are illustrated using a variety of data sets. The majority of the data sets are drawn from biostatistics but the techniques are generalizable to a wide range of other disciplines.

Linear Models with R Second Edition

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 9781439887332
Release Date: 2014-07-01
Genre: Mathematics

A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Small Area Estimation

Author: J. N. K. Rao
Publisher: John Wiley & Sons
ISBN: 9781118735725
Release Date: 2015-08-24
Genre: Mathematics

Praise for the First Edition "This pioneering work, in which Rao provides a comprehensive and up-to-date treatment of small area estimation, will become a classic...I believe that it has the potential to turn small area estimation...into a larger area of importance to both researchers and practitioners." —Journal of the American Statistical Association Written by two experts in the field, Small Area Estimation, Second Edition provides a comprehensive and up-to-date account of the methods and theory of small area estimation (SAE), particularly indirect estimation based on explicit small area linking models. The model-based approach to small area estimation offers several advantages including increased precision, the derivation of "optimal" estimates and associated measures of variability under an assumed model, and the validation of models from the sample data. Emphasizing real data throughout, the Second Edition maintains a self-contained account of crucial theoretical and methodological developments in the field of SAE. The new edition provides extensive accounts of new and updated research, which often involves complex theory to handle model misspecifications and other complexities. Including information on survey design issues and traditional methods employing indirect estimates based on implicit linking models, Small Area Estimation, Second Edition also features: Additional sections describing the use of R code data sets for readers to use when replicating applications Numerous examples of SAE applications throughout each chapter, including recent applications in U.S. Federal programs New topical coverage on extended design issues, synthetic estimation, further refinements and solutions to the Fay-Herriot area level model, basic unit level models, and spatial and time series models A discussion of the advantages and limitations of various SAE methods for model selection from data as well as comparisons of estimates derived from models to reliable values obtained from external sources, such as previous census or administrative data Small Area Estimation, Second Edition is an excellent reference for practicing statisticians and survey methodologists as well as practitioners interested in learning SAE methods. The Second Edition is also an ideal textbook for graduate-level courses in SAE and reliable small area statistics.

Explanatory Item Response Models

Author: Paul de Boeck
Publisher: Springer Science & Business Media
ISBN: 9781475739909
Release Date: 2013-03-09
Genre: Social Science

This edited volume gives a new and integrated introduction to item response models (predominantly used in measurement applications in psychology, education, and other social science areas) from the viewpoint of the statistical theory of generalized linear and nonlinear mixed models. It also includes a chapter on the statistical background and one on useful software.

Vector Generalized Linear and Additive Models

Author: Thomas W. Yee
Publisher: Springer
ISBN: 9781493928187
Release Date: 2015-09-11
Genre: Mathematics

This book presents a greatly enlarged statistical framework compared to generalized linear models (GLMs) with which to approach regression modelling. Comprising of about half-a-dozen major classes of statistical models, and fortified with necessary infrastructure to make the models more fully operable, the framework allows analyses based on many semi-traditional applied statistics models to be performed as a coherent whole. Since their advent in 1972, GLMs have unified important distributions under a single umbrella with enormous implications. However, GLMs are not flexible enough to cope with the demands of practical data analysis. And data-driven GLMs, in the form of generalized additive models (GAMs), are also largely confined to the exponential family. The methodology here and accompanying software (the extensive VGAM R package) are directed at these limitations and are described comprehensively for the first time in one volume. This book treats distributions and classical models as generalized regression models, and the result is a much broader application base for GLMs and GAMs. The book can be used in senior undergraduate or first-year postgraduate courses on GLMs or categorical data analysis and as a methodology resource for VGAM users. In the second part of the book, the R package VGAM allows readers to grasp immediately applications of the methodology. R code is integrated in the text, and datasets are used throughout. Potential applications include ecology, finance, biostatistics, and social sciences. The methodological contribution of this book stands alone and does not require use of the VGAM package.

Advances in Statistical Methods for Genetic Improvement of Livestock

Author: Daniel Gianola
Publisher: Springer Science & Business Media
ISBN: 9783642744877
Release Date: 2012-12-06
Genre: Technology & Engineering

Developments in statistics and computing as well as their application to genetic improvement of livestock gained momentum over the last 20 years. This text reviews and consolidates the statistical foundations of animal breeding. This text will prove useful as a reference source to animal breeders, quantitative geneticists and statisticians working in these areas. It will also serve as a text in graduate courses in animal breeding methodology with prerequisite courses in linear models, statistical inference and quantitative genetics.

Mixed Effects Models in S and S PLUS

Author: José C. Pinheiro
Publisher: Springer Science & Business Media
ISBN: 9781441903174
Release Date: 2009-04-15
Genre: Computers

R, linear models, random, fixed, data, analysis, fit.