Linear Functional Analysis

Author: Bryan Rynne
Publisher: Springer Science & Business Media
ISBN: 9781447136552
Release Date: 2013-03-14
Genre: Mathematics

This book provides an introduction to the ideas and methods of linear func tional analysis at a level appropriate to the final year of an undergraduate course at a British university. The prerequisites for reading it are a standard undergraduate knowledge of linear algebra and real analysis (including the the ory of metric spaces). Part of the development of functional analysis can be traced to attempts to find a suitable framework in which to discuss differential and integral equa tions. Often, the appropriate setting turned out to be a vector space of real or complex-valued functions defined on some set. In general, such a vector space is infinite-dimensional. This leads to difficulties in that, although many of the elementary properties of finite-dimensional vector spaces hold in infinite dimensional vector spaces, many others do not. For example, in general infinite dimensional vector spaces there is no framework in which to make sense of an alytic concepts such as convergence and continuity. Nevertheless, on the spaces of most interest to us there is often a norm (which extends the idea of the length of a vector to a somewhat more abstract setting). Since a norm on a vector space gives rise to a metric on the space, it is now possible to do analysis in the space. As real or complex-valued functions are often called functionals, the term functional analysis came to be used for this topic. We now briefly outline the contents of the book.

Distributionen Und Hilbertraumoperatoren

Author: Philippe Blanchard
Publisher: Springer
ISBN: 321182507X
Release Date: 1993-09-21
Genre: Science

Das Buch bietet eine Einführung in die zum Studium der Theoretischen Physik notwendigen mathematischen Grundlagen. Der erste Teil des Buches beschäftigt sich mit der Theorie der Distributionen und vermittelt daneben einige Grundbegriffe der linearen Funktionalanalysis. Der zweite Teil baut darauf auf und gibt eine auf das Wesentliche beschränkte Einführung in die Theorie der linearen Operatoren in Hilbert-Räumen. Beide Teile werden von je einer Übersicht begleitet, die die zentralen Ideen und Begriffe knapp erläutert und den Inhalt kurz beschreibt. In den Anhängen werden einige grundlegende Konstruktionen und Konzepte der Funktionalanalysis dargestellt und wichtige Konsequenzen entwickelt.

Introduction to Uncertainty Quantification

Author: T.J. Sullivan
Publisher: Springer
ISBN: 9783319233956
Release Date: 2015-12-14
Genre: Mathematics

This text provides a framework in which the main objectives of the field of uncertainty quantification (UQ) are defined and an overview of the range of mathematical methods by which they can be achieved. Complete with exercises throughout, the book will equip readers with both theoretical understanding and practical experience of the key mathematical and algorithmic tools underlying the treatment of uncertainty in modern applied mathematics. Students and readers alike are encouraged to apply the mathematical methods discussed in this book to their own favorite problems to understand their strengths and weaknesses, also making the text suitable for a self-study. Uncertainty quantification is a topic of increasing practical importance at the intersection of applied mathematics, statistics, computation and numerous application areas in science and engineering. This text is designed as an introduction to UQ for senior undergraduate and graduate students with a mathematical or statistical background and also for researchers from the mathematical sciences or from applications areas who are interested in the field. T. J. Sullivan was Warwick Zeeman Lecturer at the Mathematics Institute of the University of Warwick, United Kingdom, from 2012 to 2015. Since 2015, he is Junior Professor of Applied Mathematics at the Free University of Berlin, Germany, with specialism in Uncertainty and Risk Quantification.

Kernel based Approximation Methods using MATLAB

Author: Gregory Fasshauer
Publisher: World Scientific Publishing Company
ISBN: 9789814630153
Release Date: 2015-07-30
Genre: Mathematics

In an attempt to introduce application scientists and graduate students to the exciting topic of positive definite kernels and radial basis functions, this book presents modern theoretical results on kernel-based approximation methods and demonstrates their implementation in various settings. The authors explore the historical context of this fascinating topic and explain recent advances as strategies to address long-standing problems. Examples are drawn from fields as diverse as function approximation, spatial statistics, boundary value problems, machine learning, surrogate modeling and finance. Researchers from those and other fields can recreate the results within using the documented MATLAB code, also available through the online library. This combination of a strong theoretical foundation and accessible experimentation empowers readers to use positive definite kernels on their own problems of interest.

Einf hrung in die Funktionalanalysis

Author: Reinhold Meise
Publisher: Springer-Verlag
ISBN: 9783322803108
Release Date: 2013-03-07
Genre: Mathematics

Dieses Buch wendet sich an Studenten der Mathematik und der Physik, welche über Grundkenntnisse in Analysis und linearer Algebra verfügen.

Moderne Algebra

Author: Bartel Eckmann L. Van der van der Waerden
Publisher: Springer-Verlag
ISBN: 9783662364345
Release Date: 2013-12-11
Genre: Mathematics

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Applied Functional Analysis

Author: Eberhard Zeidler
Publisher: Springer Science & Business Media
ISBN: 9781461208150
Release Date: 2012-12-06
Genre: Mathematics

The first part of a self-contained, elementary textbook, combining linear functional analysis, nonlinear functional analysis, numerical functional analysis, and their substantial applications with each other. As such, the book addresses undergraduate students and beginning graduate students of mathematics, physics, and engineering who want to learn how functional analysis elegantly solves mathematical problems which relate to our real world. Applications concern ordinary and partial differential equations, the method of finite elements, integral equations, special functions, both the Schroedinger approach and the Feynman approach to quantum physics, and quantum statistics. As a prerequisite, readers should be familiar with some basic facts of calculus. The second part has been published under the title, Applied Functional Analysis: Main Principles and Their Applications.

Special Relativity

Author: Nicholas M.J. Woodhouse
Publisher: Springer-Verlag
ISBN: 9783540466765
Release Date: 2008-10-10
Genre: Science


Mathematische Modellierung

Author: Christof Eck
Publisher: Springer-Verlag
ISBN: 9783662543351
Release Date: 2017-02-08
Genre: Mathematics

Das Lehrbuch bietet eine lebendige und anschauliche Einführung in die mathematische Modellierung von Phänomenen aus den Natur- und Ingenieurwissenschaften. Leser lernen, mathematische Modelle zu verstehen und selbst herzuleiten und finden eine Fülle von Beispielen, u. a. aus den Bereichen chemische Reaktionskinetik, Populationsdynamik, Strömungsdynamik, Elastizitätstheorie und Kristallwachstum. Die Methoden der Linearen Algebra, der Analysis und der Theorie der gewöhnlichen und partiellen Differentialgleichungen werden sorgfältig eingeführt.

Introductory Functional Analysis

Author: B.D. Reddy
Publisher: Springer Science & Business Media
ISBN: 9781461205753
Release Date: 2013-11-27
Genre: Mathematics

Providing an introduction to functional analysis, this text treats in detail its application to boundary-value problems and finite elements, and is distinguished by the fact that abstract concepts are motivated and illustrated wherever possible. It is intended for use by senior undergraduates and graduates in mathematics, the physical sciences and engineering, who may not have been exposed to the conventional prerequisites for a course in functional analysis, such as real analysis. Mature researchers wishing to learn the basic ideas of functional analysis will equally find this useful. Offers a good grounding in those aspects of functional analysis which are most relevant to a proper understanding and appreciation of the mathematical aspects of boundary-value problems and the finite element method.

From Real to Complex Analysis

Author: R. H. Dyer
Publisher: Springer
ISBN: 9783319062099
Release Date: 2014-05-14
Genre: Mathematics

The purpose of this book is to provide an integrated course in real and complex analysis for those who have already taken a preliminary course in real analysis. It particularly emphasises the interplay between analysis and topology. Beginning with the theory of the Riemann integral (and its improper extension) on the real line, the fundamentals of metric spaces are then developed, with special attention being paid to connectedness, simple connectedness and various forms of homotopy. The final chapter develops the theory of complex analysis, in which emphasis is placed on the argument, the winding number, and a general (homology) version of Cauchy's theorem which is proved using the approach due to Dixon. Special features are the inclusion of proofs of Montel's theorem, the Riemann mapping theorem and the Jordan curve theorem that arise naturally from the earlier development. Extensive exercises are included in each of the chapters, detailed solutions of the majority of which are given at the end. From Real to Complex Analysis is aimed at senior undergraduates and beginning graduate students in mathematics. It offers a sound grounding in analysis; in particular, it gives a solid base in complex analysis from which progress to more advanced topics may be made.