Machine Learning for the Web

Author: Andrea Isoni
Publisher: Packt Publishing Ltd
ISBN: 9781785888724
Release Date: 2016-07-29
Genre: Computers

Explore the web and make smarter predictions using Python About This Book Targets two big and prominent markets where sophisticated web apps are of need and importance. Practical examples of building machine learning web application, which are easy to follow and replicate. A comprehensive tutorial on Python libraries and frameworks to get you up and started. Who This Book Is For The book is aimed at upcoming and new data scientists who have little experience with machine learning or users who are interested in and are working on developing smart (predictive) web applications. Knowledge of Django would be beneficial. The reader is expected to have a background in Python programming and good knowledge of statistics. What You Will Learn Get familiar with the fundamental concepts and some of the jargons used in the machine learning community Use tools and techniques to mine data from websites Grasp the core concepts of Django framework Get to know the most useful clustering and classification techniques and implement them in Python Acquire all the necessary knowledge to build a web application with Django Successfully build and deploy a movie recommendation system application using the Django framework in Python In Detail Python is a general purpose and also a comparatively easy to learn programming language. Hence it is the language of choice for data scientists to prototype, visualize, and run data analyses on small and medium-sized data sets. This is a unique book that helps bridge the gap between machine learning and web development. It focuses on the difficulties of implementing predictive analytics in web applications. We focus on the Python language, frameworks, tools, and libraries, showing you how to build a machine learning system. You will explore the core machine learning concepts and then develop and deploy the data into a web application using the Django framework. You will also learn to carry out web, document, and server mining tasks, and build recommendation engines. Later, you will explore Python's impressive Django framework and will find out how to build a modern simple web app with machine learning features. Style and approach Instead of being overwhelmed with multiple concepts at once, this book provides a step-by-step approach that will guide you through one topic at a time. An intuitive step-by step guide that will focus on one key topic at a time. Building upon the acquired knowledge in each chapter, we will connect the fundamental theory and practical tips by illustrative visualizations and hands-on code examples.

Python Machine Learning

Author: Sebastian Raschka
Publisher: Packt Publishing Ltd
ISBN: 9781783555147
Release Date: 2015-09-23
Genre: Computers

Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics About This Book Leverage Python's most powerful open-source libraries for deep learning, data wrangling, and data visualization Learn effective strategies and best practices to improve and optimize machine learning systems and algorithms Ask – and answer – tough questions of your data with robust statistical models, built for a range of datasets Who This Book Is For If you want to find out how to use Python to start answering critical questions of your data, pick up Python Machine Learning – whether you want to get started from scratch or want to extend your data science knowledge, this is an essential and unmissable resource. What You Will Learn Explore how to use different machine learning models to ask different questions of your data Learn how to build neural networks using Keras and Theano Find out how to write clean and elegant Python code that will optimize the strength of your algorithms Discover how to embed your machine learning model in a web application for increased accessibility Predict continuous target outcomes using regression analysis Uncover hidden patterns and structures in data with clustering Organize data using effective pre-processing techniques Get to grips with sentiment analysis to delve deeper into textual and social media data In Detail Machine learning and predictive analytics are transforming the way businesses and other organizations operate. Being able to understand trends and patterns in complex data is critical to success, becoming one of the key strategies for unlocking growth in a challenging contemporary marketplace. Python can help you deliver key insights into your data – its unique capabilities as a language let you build sophisticated algorithms and statistical models that can reveal new perspectives and answer key questions that are vital for success. Python Machine Learning gives you access to the world of predictive analytics and demonstrates why Python is one of the world's leading data science languages. If you want to ask better questions of data, or need to improve and extend the capabilities of your machine learning systems, this practical data science book is invaluable. Covering a wide range of powerful Python libraries, including scikit-learn, Theano, and Keras, and featuring guidance and tips on everything from sentiment analysis to neural networks, you'll soon be able to answer some of the most important questions facing you and your organization. Style and approach Python Machine Learning connects the fundamental theoretical principles behind machine learning to their practical application in a way that focuses you on asking and answering the right questions. It walks you through the key elements of Python and its powerful machine learning libraries, while demonstrating how to get to grips with a range of statistical models.

Machine Learning For Dummies

Author: John Paul Mueller
Publisher: John Wiley & Sons
ISBN: 9781119245513
Release Date: 2016-05-31
Genre: Computers

Machine learning is an exciting new way to use computers to perform tasks that require the ability to learn from experience. In order to make machine learning a reality, programmers rely on special languages, such as Python and R, and new types of tools. Machine Learning For Dummies helps the reader understand what machine learning is, when it can help perform a new class of computer tasks, and how to implement machine learning using Python and R, along with the required tools. Unlike most machine learning books, Machine Learning For Dummies does not assume that the reader has years of experience using programming languages. This book provides the much-needed entry point for people who really could use machine learning to accomplish practical tasks, but dont necessarily have the skills required to use on more advanced books. This book will cover the entry level materials required to get readers up and running faster, how to perform practical tasks, how to perform useful work without getting overly involved in the underlying math principles, fun ways to play with new tools and learn as a result, and how to separate facts from myth to see how machine learning is useful in todays world. --

Effective Amazon Machine Learning

Author: Alexis Perrier
Publisher: Packt Publishing Ltd
ISBN: 9781785881794
Release Date: 2017-04-25
Genre: Computers

Learn to leverage Amazon's powerful platform for your predictive analytics needs About This Book Create great machine learning models that combine the power of algorithms with interactive tools without worrying about the underlying complexity Learn the What's next? of machine learning—machine learning on the cloud—with this unique guide Create web services that allow you to perform affordable and fast machine learning on the cloud Who This Book Is For This book is intended for data scientists and managers of predictive analytics projects; it will teach beginner- to advanced-level machine learning practitioners how to leverage Amazon Machine Learning and complement their existing Data Science toolbox. No substantive prior knowledge of Machine Learning, Data Science, statistics, or coding is required. What You Will Learn Learn how to use the Amazon Machine Learning service from scratch for predictive analytics Gain hands-on experience of key Data Science concepts Solve classic regression and classification problems Run projects programmatically via the command line and the Python SDK Leverage the Amazon Web Service ecosystem to access extended data sources Implement streaming and advanced projects In Detail Predictive analytics is a complex domain requiring coding skills, an understanding of the mathematical concepts underpinning machine learning algorithms, and the ability to create compelling data visualizations. Following AWS simplifying Machine learning, this book will help you bring predictive analytics projects to fruition in three easy steps: data preparation, model tuning, and model selection. This book will introduce you to the Amazon Machine Learning platform and will implement core data science concepts such as classification, regression, regularization, overfitting, model selection, and evaluation. Furthermore, you will learn to leverage the Amazon Web Service (AWS) ecosystem for extended access to data sources, implement realtime predictions, and run Amazon Machine Learning projects via the command line and the Python SDK. Towards the end of the book, you will also learn how to apply these services to other problems, such as text mining, and to more complex datasets. Style and approach This book will include use cases you can relate to. In a very practical manner, you will explore the various capabilities of Amazon Machine Learning services, allowing you to implementing them in your environment with consummate ease.

Programming Collective Intelligence

Author: Toby Segaran
Publisher: "O'Reilly Media, Inc."
ISBN: 9780596550684
Release Date: 2007-08-16
Genre: Computers

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details." -- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths." -- Tim Wolters, CTO, Collective Intellect

Building Machine Learning Systems with Python Second Edition

Author: Luis Pedro Coelho
Publisher: Packt Publishing Ltd
ISBN: 9781784392888
Release Date: 2015-03-26
Genre: Computers

This book primarily targets Python developers who want to learn and use Python's machine learning capabilities and gain valuable insights from data to develop effective solutions for business problems.

Deep Learning

Author: Ian Goodfellow
Publisher: MIT Press
ISBN: 9780262337373
Release Date: 2016-11-10
Genre: Computers

"Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -- Elon Musk, cochair of OpenAI; cofounder and CEO of Tesla and SpaceXDeep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Microsoft Azure Essentials Azure Machine Learning

Author: Jeff Barnes
Publisher: Microsoft Press
ISBN: 9780735698185
Release Date: 2015-04-25
Genre: Computers

Microsoft Azure Essentials from Microsoft Press is a series of free ebooks designed to help you advance your technical skills with Microsoft Azure. This third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. Watch Microsoft Press’s blog and Twitter (@MicrosoftPress) to learn about other free ebooks in the Microsoft Azure Essentials series.

Machine Learning Techniques For Detecting Untrusted Pages on the Web

Author:
Publisher:
ISBN: OCLC:697537162
Release Date:
Genre:

The Web is both an excellent medium for sharing information, as well as an attractive platform for delivering products and services. This platform is, to some extent, mediated by search engines in order to meet the needs of users seeking information. Search engines are the "dragons" that keep a valuable treasure: information. Many web pages are unscrupulous and try to fool search engines to get to the top of ranking. The goal of this project is to detect such spam pages. We will particularly consider content spam and link spam, where untrusted pages use link structure to increase their importance. We pose this as a machine learning problem and build a classifier to classify pages into two category - trustworthy and untrusted .We use different link features, in other words structural characteristics of the web graph and content based features, as input to the classifier. We propose link-based techniques and context based techniques for automating the detection of Web spam, a term referring to pages which use deceptive techniques to obtain undeservedly high scores in search engines. We propose Naïve Bayesian Classifier to detect the content Spam and PageRank and TrustRank to detect the link spam.

Data Analysis Machine Learning and Applications

Author: Christine Preisach
Publisher: Springer Science & Business Media
ISBN: 354078246X
Release Date: 2008-04-13
Genre: Computers

Data analysis and machine learning are research areas at the intersection of computer science, artificial intelligence, mathematics and statistics. They cover general methods and techniques that can be applied to a vast set of applications such as web and text mining, marketing, medical science, bioinformatics and business intelligence. This volume contains the revised versions of selected papers in the field of data analysis, machine learning and applications presented during the 31st Annual Conference of the German Classification Society (Gesellschaft für Klassifikation - GfKl). The conference was held at the Albert-Ludwigs-University in Freiburg, Germany, in March 2007.

Conformal Prediction for Reliable Machine Learning

Author: Vineeth Balasubramanian
Publisher: Newnes
ISBN: 9780124017153
Release Date: 2014-04-23
Genre: Computers

The conformal predictions framework is a recent development in machine learning that can associate a reliable measure of confidence with a prediction in any real-world pattern recognition application, including risk-sensitive applications such as medical diagnosis, face recognition, and financial risk prediction. Conformal Predictions for Reliable Machine Learning: Theory, Adaptations and Applications captures the basic theory of the framework, demonstrates how to apply it to real-world problems, and presents several adaptations, including active learning, change detection, and anomaly detection. As practitioners and researchers around the world apply and adapt the framework, this edited volume brings together these bodies of work, providing a springboard for further research as well as a handbook for application in real-world problems. Understand the theoretical foundations of this important framework that can provide a reliable measure of confidence with predictions in machine learning Be able to apply this framework to real-world problems in different machine learning settings, including classification, regression, and clustering Learn effective ways of adapting the framework to newer problem settings, such as active learning, model selection, or change detection

Introduction to Machine Learning

Author: Ethem Alpaydin
Publisher: MIT Press
ISBN: 9780262303262
Release Date: 2009-12-04
Genre: Computers

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. The second edition of Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. In order to present a unified treatment of machine learning problems and solutions, it discusses many methods from different fields, including statistics, pattern recognition, neural networks, artificial intelligence, signal processing, control, and data mining. All learning algorithms are explained so that the student can easily move from the equations in the book to a computer program. The text covers such topics as supervised learning, Bayesian decision theory, parametric methods, multivariate methods, multilayer perceptrons, local models, hidden Markov models, assessing and comparing classification algorithms, and reinforcement learning. New to the second edition are chapters on kernel machines, graphical models, and Bayesian estimation; expanded coverage of statistical tests in a chapter on design and analysis of machine learning experiments; case studies available on the Web (with downloadable results for instructors); and many additional exercises. All chapters have been revised and updated. Introduction to Machine Learning can be used by advanced undergraduates and graduate students who have completed courses in computer programming, probability, calculus, and linear algebra. It will also be of interest to engineers in the field who are concerned with the application of machine learning methods.

Machine Learning

Author: Marco Gori
Publisher: Morgan Kaufmann
ISBN: 9780081006702
Release Date: 2017-11-20
Genre: Computers

Machine Learning: A Constraint-Based Approach provides readers with a refreshing look at the basic models and algorithms of machine learning, with an emphasis on current topics of interest that includes neural networks and kernel machines. The book presents the information in a truly unified manner that is based on the notion of learning from environmental constraints. While regarding symbolic knowledge bases as a collection of constraints, the book draws a path towards a deep integration with machine learning that relies on the idea of adopting multivalued logic formalisms, like in fuzzy systems. A special attention is reserved to deep learning, which nicely fits the constrained- based approach followed in this book. This book presents a simpler unified notion of regularization, which is strictly connected with the parsimony principle, and includes many solved exercises that are classified according to the Donald Knuth ranking of difficulty, which essentially consists of a mix of warm-up exercises that lead to deeper research problems. A software simulator is also included. Presents fundamental machine learning concepts, such as neural networks and kernel machines in a unified manner Provides in-depth coverage of unsupervised and semi-supervised learning Includes a software simulator for kernel machines and learning from constraints that also includes exercises to facilitate learning Contains 250 solved examples and exercises chosen particularly for their progression of difficulty from simple to complex