Machine Learning in Healthcare Informatics

Author: Sumeet Dua
Publisher: Springer Science & Business Media
ISBN: 9783642400179
Release Date: 2013-12-09
Genre: Computers

The book is a unique effort to represent a variety of techniques designed to represent, enhance, and empower multi-disciplinary and multi-institutional machine learning research in healthcare informatics. The book provides a unique compendium of current and emerging machine learning paradigms for healthcare informatics and reflects the diversity, complexity and the depth and breath of this multi-disciplinary area. The integrated, panoramic view of data and machine learning techniques can provide an opportunity for novel clinical insights and discoveries.

Human and Machine Learning

Author: Jianlong Zhou
Publisher: Springer
ISBN: 9783319904030
Release Date: 2018-06-07
Genre: Computers

With an evolutionary advancement of Machine Learning (ML) algorithms, a rapid increase of data volumes and a significant improvement of computation powers, machine learning becomes hot in different applications. However, because of the nature of “black-box” in ML methods, ML still needs to be interpreted to link human and machine learning for transparency and user acceptance of delivered solutions. This edited book addresses such links from the perspectives of visualisation, explanation, trustworthiness and transparency. The book establishes the link between human and machine learning by exploring transparency in machine learning, visual explanation of ML processes, algorithmic explanation of ML models, human cognitive responses in ML-based decision making, human evaluation of machine learning and domain knowledge in transparent ML applications. This is the first book of its kind to systematically understand the current active research activities and outcomes related to human and machine learning. The book will not only inspire researchers to passionately develop new algorithms incorporating human for human-centred ML algorithms, resulting in the overall advancement of ML, but also help ML practitioners proactively use ML outputs for informative and trustworthy decision making. This book is intended for researchers and practitioners involved with machine learning and its applications. The book will especially benefit researchers in areas like artificial intelligence, decision support systems and human-computer interaction.

Knowledge Science Engineering and Management

Author: Songmao Zhang
Publisher: Springer
ISBN: 9783319251592
Release Date: 2015-10-23
Genre: Computers

This book constitutes the refereed proceedings of the 8th International Conference on Knowledge Science, Engineering and Management, KSEM 2015, held in Chongqing, China, in October 2015. The 57 revised full papers presented together with 22 short papers and 5 keynotes were carefully selected and reviewed from 247 submissions. The papers are organized in topical sections on formal reasoning and ontologies; knowledge management and concept analysis; knowledge discovery and recognition methods; text mining and analysis; recommendation algorithms and systems; machine learning algorithms; detection methods and analysis; classification and clustering; mobile data analytics and knowledge management; bioinformatics and computational biology; and evidence theory and its application.

Advances in Biomedical Informatics

Author: Dawn E. Holmes
Publisher: Springer
ISBN: 9783319675138
Release Date: 2017-10-18
Genre: Computers

This book presents authoritative recent research on Biomedical Informatics, bringing together contributions from some of the most respected researchers in this field. Biomedical Informatics represents a growing area of interest and innovation in the management of health-related data, and is essential to the development of focused computational models. Outlining the direction of current research, the book will be of considerable interest to theoreticians and application scientists alike. Further, as all chapters are self-contained, it also provides a valuable sourcebook for graduate students.

Intelligent Engineering Informatics

Author: Vikrant Bhateja
Publisher: Springer
ISBN: 9789811075667
Release Date: 2018-04-10
Genre: Computers

This book presents the proceedings of the 6th International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA 2017), held in Bhubaneswar, Odisha. The event brought together researchers, scientists, engineers, and practitioners to exchange their new ideas and experiences in the domain of intelligent computing theories with prospective applications to various engineering disciplines. The book is divided into two volumes: Information and Decision Sciences, and Intelligent Engineering Informatics. This volume covers broad areas of Intelligent Engineering Informatics, with papers exploring both the theoretical and practical aspects of various areas like ANN and genetic algorithms, human–computer interaction, intelligent control optimisation, intelligent e-learning systems, machine learning, mobile computing, multi-agent systems, etc. The book also offers a valuable resource for students at the post-graduate level in various engineering disciplines.

Machine Learning Concepts Methodologies Tools and Applications

Author: Management Association, Information Resources
Publisher: IGI Global
ISBN: 9781609608194
Release Date: 2011-07-31
Genre: Computers

"This reference offers a wide-ranging selection of key research in a complex field of study,discussing topics ranging from using machine learning to improve the effectiveness of agents and multi-agent systems to developing machine learning software for high frequency trading in financial markets"--Provided by publishe

Demystifying Big Data and Machine Learning for Healthcare

Author: Prashant Natarajan
Publisher: CRC Press
ISBN: 9781315389318
Release Date: 2017-02-15
Genre: Medical

Healthcare transformation requires us to continually look at new and better ways to manage insights – both within and outside the organization today. Increasingly, the ability to glean and operationalize new insights efficiently as a byproduct of an organization’s day-to-day operations is becoming vital to hospitals and health systems ability to survive and prosper. One of the long-standing challenges in healthcare informatics has been the ability to deal with the sheer variety and volume of disparate healthcare data and the increasing need to derive veracity and value out of it. Demystifying Big Data and Machine Learning for Healthcare investigates how healthcare organizations can leverage this tapestry of big data to discover new business value, use cases, and knowledge as well as how big data can be woven into pre-existing business intelligence and analytics efforts. This book focuses on teaching you how to: Develop skills needed to identify and demolish big-data myths Become an expert in separating hype from reality Understand the V’s that matter in healthcare and why Harmonize the 4 C’s across little and big data Choose data fi delity over data quality Learn how to apply the NRF Framework Master applied machine learning for healthcare Conduct a guided tour of learning algorithms Recognize and be prepared for the future of artificial intelligence in healthcare via best practices, feedback loops, and contextually intelligent agents (CIAs) The variety of data in healthcare spans multiple business workflows, formats (structured, un-, and semi-structured), integration at point of care/need, and integration with existing knowledge. In order to deal with these realities, the authors propose new approaches to creating a knowledge-driven learning organization-based on new and existing strategies, methods and technologies. This book will address the long-standing challenges in healthcare informatics and provide pragmatic recommendations on how to deal with them.

Artificial Intelligence

Author: Richard E. Neapolitan
Publisher: CRC Press
ISBN: 9781351384384
Release Date: 2018-03-12
Genre: Computers

The first edition of this popular textbook, Contemporary Artificial Intelligence, provided an accessible and student friendly introduction to AI. This fully revised and expanded update, Artificial Intelligence: With an Introduction to Machine Learning, Second Edition, retains the same accessibility and problem-solving approach, while providing new material and methods. The book is divided into five sections that focus on the most useful techniques that have emerged from AI. The first section of the book covers logic-based methods, while the second section focuses on probability-based methods. Emergent intelligence is featured in the third section and explores evolutionary computation and methods based on swarm intelligence. The newest section comes next and provides a detailed overview of neural networks and deep learning. The final section of the book focuses on natural language understanding. Suitable for undergraduate and beginning graduate students, this class-tested textbook provides students and other readers with key AI methods and algorithms for solving challenging problems involving systems that behave intelligently in specialized domains such as medical and software diagnostics, financial decision making, speech and text recognition, genetic analysis, and more.

Guide to Health Informatics 2Ed

Author: Enrico Coiera
Publisher: CRC Press
ISBN: 9781444114003
Release Date: 2003-10-31
Genre: Medical

This brilliant guide to medical informatics is an easy to read overview of the basic concepts of information and communication technologies in healthcare. Not only does the book cover the complexities and implications of the increasing use of information technology in healthcare, but it also explores the basic principles of informatics that govern