Magnetic Resonance Imaging

Author: Robert W. Brown
Publisher: John Wiley & Sons
ISBN: 9780471720850
Release Date: 2014-06-23
Genre: Medical

Preceded by Magnetic resonance imaging: physical principles and sequence design / E. Mark Haacke ... [et al.]. c1999.

Magnetic Resonance Imaging

Author: Robert W. Brown
Publisher: John Wiley & Sons
ISBN: 9781118633977
Release Date: 2014-05-02
Genre: Medical

New edition explores contemporary MRI principles and practices Thoroughly revised, updated and expanded, the second edition of Magnetic Resonance Imaging: Physical Principles and Sequence Design remains the preeminent text in its field. Using consistent nomenclature and mathematical notations throughout all the chapters, this new edition carefully explains the physical principles of magnetic resonance imaging design and implementation. In addition, detailed figures and MR images enable readers to better grasp core concepts, methods, and applications. Magnetic Resonance Imaging, Second Edition begins with an introduction to fundamental principles, with coverage of magnetization, relaxation, quantum mechanics, signal detection and acquisition, Fourier imaging, image reconstruction, contrast, signal, and noise. The second part of the text explores MRI methods and applications, including fast imaging, water-fat separation, steady state gradient echo imaging, echo planar imaging, diffusion-weighted imaging, and induced magnetism. Lastly, the text discusses important hardware issues and parallel imaging. Readers familiar with the first edition will find much new material, including: New chapter dedicated to parallel imaging New sections examining off-resonance excitation principles, contrast optimization in fast steady-state incoherent imaging, and efficient lower-dimension analogues for discrete Fourier transforms in echo planar imaging applications Enhanced sections pertaining to Fourier transforms, filter effects on image resolution, and Bloch equation solutions when both rf pulse and slice select gradient fields are present Valuable improvements throughout with respect to equations, formulas, and text New and updated problems to test further the readers' grasp of core concepts Three appendices at the end of the text offer review material for basic electromagnetism and statistics as well as a list of acquisition parameters for the images in the book. Acclaimed by both students and instructors, the second edition of Magnetic Resonance Imaging offers the most comprehensive and approachable introduction to the physics and the applications of magnetic resonance imaging.

Handbook of MRI Pulse Sequences

Author: Matt A. Bernstein
Publisher: Elsevier
ISBN: 0080533124
Release Date: 2004-09-21
Genre: Mathematics

Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI Provides self-contained sections for individual techniques Can be used as a quick reference guide or as a resource for deeper study Includes both non-mathematical and mathematical descriptions Contains numerous figures, tables, references, and worked example problems

Magnetic Resonance Imaging

Author: Vadim Kuperman
Publisher: Elsevier
ISBN: 9780080535708
Release Date: 2000-03-15
Genre: Technology & Engineering

This book is intended as a text/reference for students, researchers, and professors interested in physical and biomedical applications of Magnetic Resonance Imaging (MRI). Both the theoretical and practical aspects of MRI are emphasized. The book begins with a comprehensive discussion of the Nuclear Magnetic Resonance (NMR) phenomenon based on quantum mechanics and the classical theory of electromagnetism. The first three chapters of this book provide the foundation needed to understand the basic characteristics of MR images, e.g.,image contrast, spatial resolution, signal-to-noise ratio, common image artifacts. Then MRI applications are considered in the following five chapters. Both the theoretical and practical aspects of MRI are emphasized. The book ends with a discussion of instrumentation and the principles of signal detection in MRI. Clear progression from fundamental physical principles of NMR to MRI and its applications Extensive discussion of image acquisition and reconstruction of MRI Discussion of different mechanisms of MR image contrast Mathematical derivation of the signal-to-noise dependence on basic MR imaging parameters as well as field strength In-depth consideration of artifacts in MR images Comprehensive discussion of several techniques used for rapid MR imaging including rapid gradient-echo imaging, echo-planar imaging, fast spin-echo imaging and spiral imaging Qualitative discussion combined with mathematical description of MR techniques for imaging flow

Principles of Magnetic Resonance Imaging

Author: Zhi-Pei Liang
Publisher: Wiley-IEEE Press
ISBN: 0780347234
Release Date: 1999-11-01
Genre: Technology & Engineering

In 1971 Dr. Paul C. Lauterbur pioneered spatial information encoding principles that made image formation possible by using magnetic resonance signals. Now Lauterbur, "father of the MRI", and Dr. Zhi-Pei Liang have co-authored the first engineering textbook on magnetic resonance imaging. This long-awaited, definitive text will help undergraduate and graduate students of biomedical engineering, biomedical imaging scientists, radiologists, and electrical engineers gain an in-depth understanding of MRI principles. The authors use a signal processing approach to describe the fundamentals of magnetic resonance imaging. You will find a clear and rigorous discussion of these carefully selected essential topics: Mathematical fundamentals Signal generation and detection principles Signal characteristics Signal localization principles Image reconstruction techniques Image contrast mechanisms Image resolution, noise, and artifacts Fast-scan imaging Constrained reconstruction Complete with a comprehensive set of examples and homework problems, Principles of Magnetic Resonance Imaging is the must-read book to improve your knowledge of this revolutionary technique.

Electromagnetic Analysis and Design in Magnetic Resonance Imaging

Author: Jianming Jin
Publisher: Routledge
ISBN: 9781351453400
Release Date: 2018-02-06
Genre: Medical

This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present: an introduction to MRI basic concepts of electromagnetics, including Helmholtz and Maxwell coils, inductance calculation, and magnetic fields produced by special cylindrical and spherical surface currents principles for the analysis and design of gradient coils, including discrete wires and the target field method analysis of RF coils based on the equivalent lumped-circuit model as well as an analysis based on the integral equation formulation survey of special purpose RF coils analytical and numerical methods for the analysis of electromagnetic fields in biological objects With the continued, active development of MRI instrumentation, Electromagnetic Analysis and Design in Magnetic Resonance Imaging presents an excellent, logically organized text - an indispensable resource for engineers, physicists, and graduate students working in the field of MRI.

The Physics and Mathematics of MRI

Author: Richard Ansorge
Publisher: Morgan & Claypool Publishers
ISBN: 9781681741321
Release Date: 2016-11-01
Genre: Technology & Engineering

Magnetic Resonance Imaging is a very important clinical imaging tool. It combines different fields of physics and engineering in a uniquely complex way. MRI is also surprisingly versatile, 'pulse sequences' can be designed to yield many different types of contrast. This versatility is unique to MRI. This short book gives both an in depth account of the methods used for the operation and construction of modern MRI systems and also the principles of sequence design and many examples of applications. An important additional feature of this book is the detailed discussion of the mathematical principles used in building optimal MRI systems and for sequence design. The mathematical discussion is very suitable for undergraduates attending medical physics courses. It is also more complete than usually found in alternative books for physical scientists or more clinically orientated works.

Magnetic Resonance Imaging

Author: Stewart C Bushong
Publisher: Elsevier Health Sciences
ISBN: 9780323074087
Release Date: 2014-07-28

Magnetic Resonance Imaging: Physical and Biological Principles, 4th Edition offers comprehensive, well-illustrated coverage on this specialized subject at a level that does not require an extensive background in math and physics. It covers the fundamentals and principles of conventional MRI along with the latest fast imaging techniques and their applications. Beginning with an overview of the fundamentals of electricity and magnetism (Part 1), Parts 2 and 3 present an in-depth explanation of how MRI works. The latest imaging methods are presented in Parts 4 and 5, and the final section (Part 6) covers personnel and patient safety and administration issues. This book is perfect for student radiographers and practicing technologists preparing to take the MRI advanced certification exam offered by the American Registry of Radiologic Technologists (ARRT). ""I would recommend it to anyone starting their MRI training and anyone trying to teach MRI to others."" Reviewed by RAD Magazine, June 2015Challenge questions at the end of each chapter help you assess your comprehension.Chapter outlines and objectives assist you in following the hierarchy of material in the text."Penguin" boxes highlight key points in the book to help you retain the most important information and concepts in the text.NEW! Two MRI practice exams that mirror the test items in each ARRT category have been added to the end of the text to help you replicate the ARRT exam experience.NEW! Chapter on Partially Parallel Magnetic Resonance Imaging increases the comprehensiveness of the text.NEW! Updated key terms have been added to each chapter with an updated glossary defining each term.

Electromagnetics in Magnetic Resonance Imaging

Author: Christopher M. Collins
Publisher: Morgan & Claypool Publishers
ISBN: 9781681741475
Release Date: 2016-03-01
Genre: Medical

In the past few decades, Magnetic Resonance Imaging (MRI) has become an indispensable tool in modern medicine, with MRI systems now available at every major hospital in the developed world. But for all its utility and prevalence, it is much less commonly understood and less readily explained than other common medical imaging techniques. Unlike optical, ultrasonic, X-ray (including CT), and nuclear medicine-based imaging, MRI does not rely primarily on simple transmission and/or reflection of energy, and the highest achievable resolution in MRI is orders of magnitude smaller that the smallest wavelength involved. In this book, MRI will be explained with emphasis on the magnetic fields required, their generation, their concomitant electric fields, the various interactions of all these fields with the subject being imaged, and the implications of these interactions to image quality and patient safety. Classical electromagnetics will be used to describe aspects from the fundamental phenomenon of nuclear precession through signal detection and MRI safety. Simple explanations and Illustrations combined with pertinent equations are designed to help the reader rapidly gain a fundamental understanding and an appreciation of this technology as it is used today, as well as ongoing advances that will increase its value in the future. Numerous references are included to facilitate further study with an emphasis on areas most directly related to electromagnetics.

MRI The Basics

Author: Ray H. Hashemi
Publisher: Lippincott Williams & Wilkins
ISBN: 9781496384348
Release Date: 2017-10-16
Genre: Medical

Concise, readable, and engaging, MRI: The Basics, 4th Edition, offers an excellent introduction to the physics behind MR imaging. Clinically relevant coverage includes everything from basic principles and key math concepts to more advanced topics, including the latest MR techniques and optimum image creation. Hundreds of high-quality illustrations, board-style questions and answers, legible equations, and instructive diagrams take you from the basics of MR physics through current applications.

Principles of Nuclear Magnetic Resonance Microscopy

Author: Paul T. Callaghan
Publisher: Oxford University Press on Demand
ISBN: 0198539975
Release Date: 1993
Genre: Foreign Language Study

This book details the underlying principles behind the use of magnetic field gradients to image molecular distribution and molecular motion, providing many examples by way of illustration.

Cardiovascular MRI

Author: Vivian S. Lee
Publisher: Lippincott Williams & Wilkins
ISBN: 0781779960
Release Date: 2006
Genre: Medical

This text equips radiologists with a firm working knowledge of the physical principles underlying cardiovascular MR image generation. Emphasis is on practical applications of MR physics in customizing and optimizing imaging sequences and protocols and minimizing artifacts. Section I covers basic principles of MR physics and includes a chapter on safety. Section II applies these principles to vascular imaging, including gadolinium-enhanced MR angiography. Section III examines various techniques and applications of cardiac MR imaging. Each chapter includes boxed Key Concepts, Challenging Questions, and Review Questions, and many chapters include sample protocols. More than 400 drawings and scans complement the text.


Author: Brian M. Dale
Publisher: John Wiley & Sons
ISBN: 9781119013037
Release Date: 2015-08-06
Genre: Medical

This fifth edition of the most accessible introduction to MRI principles and applications from renowned teachers in the field provides an understandable yet comprehensive update. Accessible introductory guide from renowned teachers in the field Provides a concise yet thorough introduction for MRI focusing on fundamental physics, pulse sequences, and clinical applications without presenting advanced math Takes a practical approach, including up-to-date protocols, and supports technical concepts with thorough explanations and illustrations Highlights sections that are directly relevant to radiology board exams Presents new information on the latest scan techniques and applications including 3 Tesla whole body scanners, safety issues, and the nephrotoxic effects of gadolinium-based contrast media

RF Coils for MRI

Author: J. Thomas Vaughan
Publisher: John Wiley & Sons
ISBN: 9781118590454
Release Date: 2012-12-19
Genre: Medical

The content of this volume has been added to eMagRes (formerly Encyclopedia of Magnetic Resonance) - the ultimate online resource for NMR and MRI. To date there is no single reference aimed at teaching the art of applications guided coil design for use in MRI. This RF Coils for MRI handbook is intended to become this reference. Heretofore, much of the know-how of RF coil design is bottled up in various industry and academic laboratories around the world. Some of this information on coil technologies and applications techniques has been disseminated through the literature, while more of this knowledge has been withheld for competitive or proprietary advantage. Of the published works, the record of technology development is often incomplete and misleading, accurate referencing and attribution assignment being tantamount to admission of patent infringement in the commercial arena. Accordingly, the literature on RF coil design is fragmented and confusing. There are no texts and few courses offered to teach this material. Mastery of the art and science of RF coil design is perhaps best achieved through the learning that comes with a long career in the field at multiple places of employment…until now. RF Coils for MRI combines the lifetime understanding and expertise of many of the senior designers in the field into a single, practical training manual. It informs the engineer on part numbers and sources of component materials, equipment, engineering services and consulting to enable anyone with electronics bench experience to build, test and interface a coil. The handbook teaches the MR system user how to safely and successfully implement the coil for its intended application. The comprehensive articles also include information required by the scientist or physician to predict respective experiment or clinical performance of a coil for a variety of common applications. It is expected that RF Coils for MRI becomes an important resource for engineers, technicians, scientists, and physicians wanting to safely and successfully buy or build and use MR coils in the clinic or laboratory. Similarly, this guidebook provides teaching material for students, fellows and residents wanting to better understand the theory and operation of RF coils. Many of the articles have been written by the pioneers and developers of coils, arrays and probes, so this is all first hand information! The handbook serves as an expository guide for hands-on radiologists, radiographers, physicians, engineers, medical physicists, technologists, and for anyone with interests in building or selecting and using RF coils to achieve best clinical or experimental results. About EMR Handbooks / eMagRes Handbooks The Encyclopedia of Magnetic Resonance (up to 2012) and eMagRes (from 2013 onward) publish a wide range of online articles on all aspects of magnetic resonance in physics, chemistry, biology and medicine. The existence of this large number of articles, written by experts in various fields, is enabling the publication of a series of EMR Handbooks / eMagRes Handbooks on specific areas of NMR and MRI. The chapters of each of these handbooks will comprise a carefully chosen selection of articles from eMagRes. In consultation with the eMagRes Editorial Board, the EMR Handbooks / eMagRes Handbooks are coherently planned in advance by specially-selected Editors, and new articles are written (together with updates of some already existing articles) to give appropriate complete coverage. The handbooks are intended to be of value and interest to research students, postdoctoral fellows and other researchers learning about the scientific area in question and undertaking relevant experiments, whether in academia or industry. Have the content of this Handbook and the complete content of eMagRes at your fingertips! Visit: View other eMagRes publications here

Susceptibility Weighted Imaging in MRI

Author: E. Mark Haacke
Publisher: John Wiley & Sons
ISBN: 9781118148075
Release Date: 2014-03-25
Genre: Medical

MRI Susceptibility Weighted Imaging discusses the promising new MRI technique called Susceptibility Weighted Imaging (SWI), a powerful tool for the diagnosis and treatment of acute stroke, allowing earlier detection of acute stroke hemorrhage and easier detection of microbleeds in acute ischemia. The book is edited by the originators of SWI and features contributions from the top leaders in the science. Presenting an even balance between technical/scientific aspects of the modality and clinical application, this book includes over 100 super high-quality radiographic images and 100 additional graphics and tables.