Making and Breaking Mathematical Sense

Author: Roi Wagner
Publisher: Princeton University Press
ISBN: 9781400883783
Release Date: 2017-01-10
Genre: Mathematics

In line with the emerging field of philosophy of mathematical practice, this book pushes the philosophy of mathematics away from questions about the reality and truth of mathematical entities and statements and toward a focus on what mathematicians actually do—and how that evolves and changes over time. How do new mathematical entities come to be? What internal, natural, cognitive, and social constraints shape mathematical cultures? How do mathematical signs form and reform their meanings? How can we model the cognitive processes at play in mathematical evolution? And how does mathematics tie together ideas, reality, and applications? Roi Wagner uniquely combines philosophical, historical, and cognitive studies to paint a fully rounded image of mathematics not as an absolute ideal but as a human endeavor that takes shape in specific social and institutional contexts. The book builds on ancient, medieval, and modern case studies to confront philosophical reconstructions and cutting-edge cognitive theories. It focuses on the contingent semiotic and interpretive dimensions of mathematical practice, rather than on mathematics' claim to universal or fundamental truths, in order to explore not only what mathematics is, but also what it could be. Along the way, Wagner challenges conventional views that mathematical signs represent fixed, ideal entities; that mathematical cognition is a rigid transfer of inferences between formal domains; and that mathematics’ exceptional consensus is due to the subject’s underlying reality. The result is a revisionist account of mathematical philosophy that will interest mathematicians, philosophers, and historians of science alike.

The Philosophy of Mathematical Practice

Author: Paolo Mancosu
Publisher: Oxford University Press on Demand
ISBN: 9780199296453
Release Date: 2008-06-19
Genre: Philosophy

This book gives a coherent and unified presentation of a new direction of work in philosophy of mathematics. This new approach in philosophy of mathematics requires extensive attention to mathematical practice and provides philosophical analyses of important novel characteristics of contemporary (twentieth century) mathematics and of many aspects of mathematical activity-such as visualization, explanation, understanding etc.-- which escape purely formal logicaltreatment.The book consists of a lengthy introduction by the editor and of eight chapters written by some of the very best scholars in this area. Each chapter consists of a short introduction to the general topic of the chapter and of a longer research article in the very same area. Theeight topics selected represent a broad spectrum of the contemporary philosophical reflection on different aspects of mathematical practice: Diagrammatic reasoning and representational systems; Visualization; Mathematical Explanation; Purity of Methods; Mathematical Concepts; Philosophical relevance of category theory; Philosophical aspects of computer science in mathematics; Philosophical impact of recent developments in mathematical physics.

Mathematics as Sign

Author: Brian Rotman
Publisher: Stanford University Press
ISBN: 0804736847
Release Date: 2000
Genre: Mathematics

In this book, Rotman argues that mathematics is a vast and unique man-made imagination machine controlled by writing. It addresses both aspects—mental and linguistic—of this machine. The essays in this volume offer an insight into Rotman's project, one that has been called "one of the most original and important recent contributions to the philosophy of mathematics."

An Introduction to the Philosophy of Mathematics

Author: Mark Colyvan
Publisher: Cambridge University Press
ISBN: 9780521826020
Release Date: 2012-06-14
Genre: Mathematics

This introduction to the philosophy of mathematics focuses on contemporary debates in an important and central area of philosophy. The reader is taken on a fascinating and entertaining journey through some intriguing mathematical and philosophical territory, including such topics as the realism/anti-realism debate in mathematics, mathematical explanation, the limits of mathematics, the significance of mathematical notation, inconsistent mathematics and the applications of mathematics. Each chapter has a number of discussion questions and recommended further reading from both the contemporary literature and older sources. Very little mathematical background is assumed and all of the mathematics encountered is clearly introduced and explained using a wide variety of examples. The book is suitable for an undergraduate course in philosophy of mathematics and, more widely, for anyone interested in philosophy and mathematics.

What is Mathematics Really

Author: Reuben Hersh
Publisher: Oxford University Press, USA
ISBN: 0195130871
Release Date: 1999
Genre: Mathematics

Reflecting an insider's view of mathematical life, the author argues that mathematics must be historically evolved, and intelligible only in a social context.

History and Philosophy of Modern Mathematics

Author: William Aspray
Publisher: U of Minnesota Press
ISBN: 0816615675
Release Date: 1988
Genre: Mathematics

History and Philosophy of Modern Mathematics was first published in 1988. Minnesota Archive Editions uses digital technology to make long-unavailable books once again accessible, and are published unaltered from the original University of Minnesota Press editions. The fourteen essays in this volume build on the pioneering effort of Garrett Birkhoff, professor of mathematics at Harvard University, who in 1974 organized a conference of mathematicians and historians of modern mathematics to examine how the two disciplines approach the history of mathematics. In History and Philosophy of Modern Mathematics, William Aspray and Philip Kitcher bring together distinguished scholars from mathematics, history, and philosophy to assess the current state of the field. Their essays, which grow out of a 1985 conference at the University of Minnesota, develop the basic premise that mathematical thought needs to be studied from an interdisciplinary perspective. The opening essays study issues arising within logic and the foundations of mathematics, a traditional area of interest to historians and philosophers. The second section examines issues in the history of mathematics within the framework of established historical periods and questions. Next come case studies that illustrate the power of an interdisciplinary approach to the study of mathematics. The collection closes with a look at mathematics from a sociohistorical perspective, including the way institutions affect what constitutes mathematical knowledge.

Sourcebook in the Mathematics of Medieval Europe and North Africa

Author: Victor J. Katz
Publisher: Princeton University Press
ISBN: 9781400883202
Release Date: 2016-10-18
Genre: Mathematics

Medieval Europe was a meeting place for the Christian, Jewish, and Islamic civilizations, and the fertile intellectual exchange of these cultures can be seen in the mathematical developments of the time. This sourcebook presents original Latin, Hebrew, and Arabic sources of medieval mathematics, and shows their cross-cultural influences. Most of the Hebrew and Arabic sources appear here in translation for the first time. Readers will discover key mathematical revelations, foundational texts, and sophisticated writings by Latin, Hebrew, and Arabic-speaking mathematicians, including Abner of Burgos's elegant arguments proving results on the conchoid—a curve previously unknown in medieval Europe; Levi ben Gershon’s use of mathematical induction in combinatorial proofs; Al-Mu’taman Ibn Hūd’s extensive survey of mathematics, which included proofs of Heron’s Theorem and Ceva’s Theorem; and Muhyī al-Dīn al-Maghribī’s interesting proof of Euclid’s parallel postulate. The book includes a general introduction, section introductions, footnotes, and references. The Sourcebook in the Mathematics of Medieval Europe and North Africa will be indispensable to anyone seeking out the important historical sources of premodern mathematics.

Categories for the Working Philosopher

Author: Elaine Landry
Publisher: Oxford University Press
ISBN: 9780198748991
Release Date: 2017-10-19
Genre: Mathematics

This is the first volume on category theory for a broad philosophical readership. It is designed to show the interest and significance of category theory for a range of philosophical interests: mathematics, proof theory, computation, cognition, scientific modelling, physics, ontology, the structure of the world. Each chapter is written by either a category-theorist or a philosopher working in one of the represented areas, in an accessible waythat builds on the concepts that are already familiar to philosophers working in these areas.

Powerful Problem Solving

Author: Max Ray
Publisher: Heinemann Educational Books
ISBN: 0325050902
Release Date: 2013
Genre: Education

How can we break the cycle of frustrated students who "drop out of math" because the procedures just don't make sense to them? Or who memorize the procedures for the test but don't really understand the mathematics? Max Ray and his colleagues at the Math Forum @ Drexel University say "problem solved," by offering their collective wisdom about how students become proficient problem solvers, through the lens of the CCSS for Mathematical Practices. They unpack the process of problem solving in fresh new ways and turn the Practices into activities that teachers can use to foster habits of mind required by the Common Core: communicating ideas and listening to the reflections of others estimating and reasoning to see the "big picture" of a problem organizing information to promote problem solving using modeling and representations to visualize abstract concepts reflecting on, revising, justifying, and extending the work. Powerful Problem Solving shows what's possible when students become active doers rather than passive consumers of mathematics. Max argues that the process of sense-making truly begins when we create questioning, curious classrooms full of students' own thoughts and ideas. By asking "What do you notice? What do you wonder?" we give students opportunities to see problems in big-picture ways, and discover multiple strategies for tackling a problem. Self-confidence, reflective skills, and engagement soar, and students discover that the goal is not to be "over and done," but to realize the many different ways to approach problems. Read a sample chapter. Save 15% when you purchase 15 copies with a Book Study Bundle!

The Nature of Mathematical Knowledge

Author: Philip Kitcher
Publisher: Oxford University Press on Demand
ISBN: 9780195035414
Release Date: 1984
Genre: Mathematics

This book argues against the view that mathematical knowledge is a priori, contending that mathematics is an empirical science and develops historically, just as natural sciences do. Kitcher presents a complete, systematic, and richly detailed account of the nature of mathematical knowledgeand its historical development, focusing on such neglected issues as how and why mathematical language changes, why certain questions assume overriding importance, and how standards of proof are modified.

Starry Reckoning Reference and Analysis in Mathematics and Cosmology

Author: Emily Rolfe Grosholz
Publisher: Springer
ISBN: 9783319466903
Release Date: 2016-11-25
Genre: Philosophy

This book deals with a topic that has been largely neglected by philosophers of science to date: the ability to refer and analyze in tandem. On the basis of a set of philosophical case studies involving both problems in number theory and issues concerning time and cosmology from the era of Galileo, Newton and Leibniz up through the present day, the author argues that scientific knowledge is a combination of accurate reference and analytical interpretation. In order to think well, we must be able to refer successfully, so that we can show publicly and clearly what we are talking about. And we must be able to analyze well, that is, to discover productive and explanatory conditions of intelligibility for the things we are thinking about. The book’s central claim is that the kinds of representations that make successful reference possible and those that make successful analysis possible are not the same, so that significant scientific and mathematical work typically proceeds by means of a heterogeneous discourse that juxtaposes and often superimposes a variety of kinds of representation, including formal and natural languages as well as more iconic modes. It demonstrates the virtues and necessity of heterogeneity in historically central reasoning, thus filling an important gap in the literature and fostering a new, timely discussion on the epistemology of science and mathematics.

The Best Writing on Mathematics 2017

Author: Mircea Pitici
Publisher: Princeton University Press
ISBN: 9781400888559
Release Date: 2017-10-31
Genre: Mathematics

The year's finest mathematics writing from around the world This annual anthology brings together the year’s finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2017 makes available to a wide audience many articles not easily found anywhere else—and you don’t need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today’s hottest mathematical debates. Here Evelyn Lamb describes the excitement of searching for incomprehensibly large prime numbers, Jeremy Gray speculates about who would have won math’s highest prize—the Fields Medal—in the nineteenth century, and Philip Davis looks at mathematical results and artifacts from a business and marketing viewpoint. In other essays, Noson Yanofsky explores the inherent limits of knowledge in mathematical thinking, Jo Boaler and Lang Chen reveal why finger-counting enhances children’s receptivity to mathematical ideas, and Carlo Séquin and Raymond Shiau attempt to discover how the Renaissance painter Fra Luca Pacioli managed to convincingly depict his famous rhombicuboctahedron, a twenty-six-sided Archimedean solid. And there’s much, much more. In addition to presenting the year’s most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us—and where it is headed.

Philosophy of Mathematics and Deductive Structure in Euclid s Elements

Author: Ian Mueller
Publisher: Courier Corporation
ISBN: 9780486150871
Release Date: 2013-01-03
Genre: Mathematics

This text provides an understanding of the classical Greek conception of mathematics as expressed in Euclid's Elements. It focuses on philosophical, foundational, and logical questions and features helpful appendixes.

Lakatos Philosophy of Mathematics

Author: T. Koetsier
Publisher: North Holland
ISBN: 0444889442
Release Date: 1991-01-01
Genre: Mathematics

Hardbound. In this book, which is both a philosophical and historiographical study, the author investigates the fallibility and the rationality of mathematics by means of rational reconstructions of developments in mathematics. The initial chapters are devoted to a critical discussion of Lakatos' philosophy of mathematics. In the remaining chapters several episodes in the history of mathematics are discussed, such as the appearance of deduction in Greek mathematics and the transition from Eighteenth-Century to Nineteenth-Century analysis. The author aims at developing a notion of mathematical rationality that agrees with the historical facts. A modified version of Lakatos' methodology is proposed. The resulting constructions show that mathematical knowledge is fallible, but that its fallibility is remarkably weak.

Why Is There Philosophy of Mathematics At All

Author: Ian Hacking
Publisher: Cambridge University Press
ISBN: 9781107729827
Release Date: 2014-01-30
Genre: Science

This truly philosophical book takes us back to fundamentals - the sheer experience of proof, and the enigmatic relation of mathematics to nature. It asks unexpected questions, such as 'what makes mathematics mathematics?', 'where did proof come from and how did it evolve?', and 'how did the distinction between pure and applied mathematics come into being?' In a wide-ranging discussion that is both immersed in the past and unusually attuned to the competing philosophical ideas of contemporary mathematicians, it shows that proof and other forms of mathematical exploration continue to be living, evolving practices - responsive to new technologies, yet embedded in permanent (and astonishing) facts about human beings. It distinguishes several distinct types of application of mathematics, and shows how each leads to a different philosophical conundrum. Here is a remarkable body of new philosophical thinking about proofs, applications, and other mathematical activities.