Markov Logic

Author: Pedro Domingos
Publisher: Morgan & Claypool Publishers
ISBN: 9781598296921
Release Date: 2009
Genre: Computers

Most subfields of computer science have an interface layer via which applications communicate with the infrastructure, and this is key to their success (e.g., the Internet in networking, the relational model in databases, etc.). So far this interface layer has been missing in AI. First-order logic and probabilistic graphical models each have some of the necessary features, but a viable interface layer requires combining both. Markov logic is a powerful new language that accomplishes this by attaching weights to first-order formulas and treating them as templates for features of Markov random fields. Most statistical models in wide use are special cases of Markov logic, and first-order logic is its infinite-weight limit. Inference algorithms for Markov logic combine ideas from satisfiability, Markov chain Monte Carlo, belief propagation, and resolution. Learning algorithms make use of conditional likelihood, convex optimization, and inductive logic programming. Markov logic has been successfully applied to problems in information extraction and integration, natural language processing, robot mapping, social networks, computational biology, and others, and is the basis of the open-source Alchemy system. Table of Contents: Introduction / Markov Logic / Inference / Learning / Extensions / Applications / Conclusion

Statistical Relational Artificial Intelligence

Author: Luc De Raedt
Publisher: Morgan & Claypool Publishers
ISBN: 9781627058421
Release Date: 2016-03-24
Genre: Computers

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Statistical Relational Artificial Intelligence

Author: Luc De Raedt
Publisher: Morgan & Claypool Publishers
ISBN: 9781681731803
Release Date: 2016-03-24
Genre: Computers

An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty. Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations. The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.

Metric Learning

Author: Aurelien Bellet
Publisher: Morgan & Claypool Publishers
ISBN: 9781627053662
Release Date: 2015-01-01
Genre: Computers

Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data. We first introduce relevant definitions and classic metric functions, as well as examples of their use in machine learning and data mining. We then review a wide range of metric learning algorithms, starting with the simple setting of linear distance and similarity learning. We show how one may scale-up these methods to very large amounts of training data. To go beyond the linear case, we discuss methods that learn nonlinear metrics or multiple linear metrics throughout the feature space, and review methods for more complex settings such as multi-task and semi-supervised learning. Although most of the existing work has focused on numerical data, we cover the literature on metric learning for structured data like strings, trees, graphs and time series. In the more technical part of the book, we present some recent statistical frameworks for analyzing the generalization performance in metric learning and derive results for some of the algorithms presented earlier. Finally, we illustrate the relevance of metric learning in real-world problems through a series of successful applications to computer vision, bioinformatics and information retrieval.

Learning with Support Vector Machines

Author: Colin Campbell
Publisher: Morgan & Claypool Publishers
ISBN: 9781608456161
Release Date: 2011
Genre: Computers

Support Vectors Machines have become a well established tool within machine learning. They work well in practice and have now been used across a wide range of applications from recognizing hand-written digits, to face identification, text categorisation, bioinformatics, and database marketing. In this book we give an introductory overview of this subject. We start with a simple Support Vector Machine for performing binary classification before considering multi-class classification and learning in the presence of noise. We show that this framework can be extended to many other scenarios such as prediction with real-valued outputs, novelty detection and the handling of complex output structures such as parse trees. Finally, we give an overview of the main types of kernels which are used in practice and how to learn and make predictions from multiple types of input data. Table of Contents: Support Vector Machines for Classification / Kernel-based Models / Learning with Kernels

Lifelong Machine Learning

Author: Zhiyuan Chen
Publisher: Morgan & Claypool Publishers
ISBN: 9781681733036
Release Date: 2018-08-14
Genre: Computers

Lifelong Machine Learning, Second Edition is an introduction to an advanced machine learning paradigm that continuously learns by accumulating past knowledge that it then uses in future learning and problem solving. In contrast, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model that is then used in its intended application. It makes no attempt to retain the learned knowledge and use it in subsequent learning. Unlike this isolated system, humans learn effectively with only a few examples precisely because our learning is very knowledge-driven: the knowledge learned in the past helps us learn new things with little data or effort. Lifelong learning aims to emulate this capability, because without it, an AI system cannot be considered truly intelligent. Research in lifelong learning has developed significantly in the relatively short time since the first edition of this book was published. The purpose of this second edition is to expand the definition of lifelong learning, update the content of several chapters, and add a new chapter about continual learning in deep neural networks—which has been actively researched over the past two or three years. A few chapters have also been reorganized to make each of them more coherent for the reader. Moreover, the authors want to propose a unified framework for the research area. Currently, there are several research topics in machine learning that are closely related to lifelong learning—most notably, multi-task learning, transfer learning, and meta-learning—because they also employ the idea of knowledge sharing and transfer. This book brings all these topics under one roof and discusses their similarities and differences. Its goal is to introduce this emerging machine learning paradigm and present a comprehensive survey and review of the important research results and latest ideas in the area. This book is thus suitable for students, researchers, and practitioners who are interested in machine learning, data mining, natural language processing, or pattern recognition. Lecturers can readily use the book for courses in any of these related fields.

Algorithms for Reinforcement Learning

Author: Csaba Szepesvari
Publisher: Morgan & Claypool Publishers
ISBN: 9781608454921
Release Date: 2010
Genre: Computers

Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming.We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations.

A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence

Author: Nikos Vlassis
Publisher: Morgan & Claypool Publishers
ISBN: 9781598295269
Release Date: 2007
Genre: Computers

Multiagent systems is an expanding field that blends classical fields like game theory and decentralized control with modern fields like computer science and machine learning. This monograph provides a concise introduction to the subject, covering the theoretical foundations as well as more recent developments in a coherent and readable manner. The text is centered on the concept of an agent as decision maker. Chapter 1 is a short introduction to the field of multiagent systems. Chapter 2 covers the basic theory of singleagent decision making under uncertainty. Chapter 3 is a brief introduction to game theory, explaining classical concepts like Nash equilibrium. Chapter 4 deals with the fundamental problem of coordinating a team of collaborative agents. Chapter 5 studies the problem of multiagent reasoning and decision making under partial observability. Chapter 6 focuses on the design of protocols that are stable against manipulations by self-interested agents. Chapter 7 provides a short introduction to the rapidly expanding field of multiagent reinforcement learning. The material can be used for teaching a half-semester course on multiagent systems covering, roughly, one chapter per lecture.

Planning with Markov Decision Processes

Author: Mausam
Publisher: Morgan & Claypool Publishers
ISBN: 9781608458868
Release Date: 2012
Genre: Computers

Markov Decision Processes (MDPs) are widely popular in Artificial Intelligence for modeling sequential decision-making scenarios with probabilistic dynamics. They are the framework of choice when designing an intelligent agent that needs to act for long periods of time in an environment where its actions could have uncertain outcomes. MDPs are actively researched in two related subareas of AI, probabilistic planning and reinforcement learning. Probabilistic planning assumes known models for the agent's goals and domain dynamics, and focuses on determining how the agent should behave to achieve its objectives. On the other hand, reinforcement learning additionally learns these models based on the feedback the agent gets from the environment. This book provides a concise introduction to the use of MDPs for solving probabilistic planning problems, with an emphasis on the algorithmic perspective. It covers the whole spectrum of the field, from the basics to state-of-the-art optimal and approximation algorithms. We first describe the theoretical foundations of MDPs and the fundamental solution techniques for them. We then discuss modern optimal algorithms based on heuristic search and the use of structured representations. A major focus of the book is on the numerous approximation schemes for MDPs that have been developed in the AI literature. These include determinization-based approaches, sampling techniques, heuristic functions, dimensionality reduction, and hierarchical representations. Finally, we briefly introduce several extensions of the standard MDP classes that model and solve even more complex planning problems. Table of Contents: Introduction / MDPs / Fundamental Algorithms / Heuristic Search Algorithms / Symbolic Algorithms / Approximation Algorithms / Advanced Notes

Markov Decision Processes in Artificial Intelligence

Author: Olivier Sigaud
Publisher: John Wiley & Sons
ISBN: 9781118620106
Release Date: 2013-03-04
Genre: Technology & Engineering

Markov Decision Processes (MDPs) are a mathematical framework for modeling sequential decision problems under uncertainty as well as Reinforcement Learning problems. Written by experts in the field, this book provides a global view of current research using MDPs in Artificial Intelligence. It starts with an introductory presentation of the fundamental aspects of MDPs (planning in MDPs, Reinforcement Learning, Partially Observable MDPs, Markov games and the use of non-classical criteria). Then it presents more advanced research trends in the domain and gives some concrete examples using illustrative applications.

Robot Learning from Human Teachers

Author: Sonia Chernova
Publisher: Morgan & Claypool Publishers
ISBN: 9781681731797
Release Date: 2014-04-01
Genre: Computers

Learning from Demonstration (LfD) explores techniques for learning a task policy from examples provided by a human teacher. The field of LfD has grown into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not robotics experts). In this book, we provide an introduction to the field with a focus on the unique technical challenges associated with designing robots that learn from naive human teachers. We begin, in the introduction, with a unification of the various terminology seen in the literature as well as an outline of the design choices one has in designing an LfD system. Chapter 2 gives a brief survey of the psychology literature that provides insights from human social learning that are relevant to designing robotic social learners. Chapter 3 walks through an LfD interaction, surveying the design choices one makes and state of the art approaches in prior work. First, is the choice of input, how the human teacher interacts with the robot to provide demonstrations. Next, is the choice of modeling technique. Currently, there is a dichotomy in the field between approaches that model low-level motor skills and those that model high-level tasks composed of primitive actions. We devote a chapter to each of these. Chapter 7 is devoted to interactive and active learning approaches that allow the robot to refine an existing task model. And finally, Chapter 8 provides best practices for evaluation of LfD systems, with a focus on how to approach experiments with human subjects in this domain.

A Short Introduction to Preferences

Author: Francesca Rossi
Publisher: Morgan & Claypool Publishers
ISBN: 9781608455867
Release Date: 2011
Genre: Computers

Computational social choice is an expanding field that merges classical topics like economics and voting theory with more modern topics like artificial intelligence, multiagent systems, and computational complexity. This book provides a concise introduction to the main research lines in this field, covering aspects such as preference modelling, uncertainty reasoning, social choice, stable matching, and computational aspects of preference aggregation and manipulation. The book is centered around the notion of preference reasoning, both in the single-agent and the multi-agent setting. It presents the main approaches to modeling and reasoning with preferences, with particular attention to two popular and powerful formalisms, soft constraints and CP-nets. The authors consider preference elicitation and various forms of uncertainty in soft constraints. They review the most relevant results in voting, with special attention to computational social choice. Finally, the book considers preferences in matching problems. The book is intended for students and researchers who may be interested in an introduction to preference reasoning and multi-agent preference aggregation, and who want to know the basic notions and results in computational social choice. Table of Contents: Introduction / Preference Modeling and Reasoning / Uncertainty in Preference Reasoning / Aggregating Preferences / Stable Marriage Problems

Abstraction in Artificial Intelligence and Complex Systems

Author: Lorenza Saitta
Publisher: Springer Science & Business Media
ISBN: 9781461470526
Release Date: 2013-06-05
Genre: Computers

Abstraction is a fundamental mechanism underlying both human and artificial perception, representation of knowledge, reasoning and learning. This mechanism plays a crucial role in many disciplines, notably Computer Programming, Natural and Artificial Vision, Complex Systems, Artificial Intelligence and Machine Learning, Art, and Cognitive Sciences. This book first provides the reader with an overview of the notions of abstraction proposed in various disciplines by comparing both commonalities and differences. After discussing the characterizing properties of abstraction, a formal model, the KRA model, is presented to capture them. This model makes the notion of abstraction easily applicable by means of the introduction of a set of abstraction operators and abstraction patterns, reusable across different domains and applications. It is the impact of abstraction in Artificial Intelligence, Complex Systems and Machine Learning which creates the core of the book. A general framework, based on the KRA model, is presented, and its pragmatic power is illustrated with three case studies: Model-based diagnosis, Cartographic Generalization, and learning Hierarchical Hidden Markov Models.

Case based Reasoning

Author: Beatriz Lopez
Publisher: Morgan & Claypool Publishers
ISBN: 9781627050074
Release Date: 2013
Genre: Computers

Case-based reasoning is a methodology with a long tradition in artificial intelligence that brings together reasoning and machine learning techniques to solve problems based on past experiences or cases. Given a problem to be solved, reasoning involves the use of methods to retrieve similar past cases in order to reuse their solution for the problem at hand. Once the problem has been solved, learning methods can be applied to improve the knowledge based on past experiences. In spite of being a broad methodology applied in industry and services, case-based reasoning has often been forgotten in both artificial intelligence and machine learning books. The aim of this book is to present a concise introduction to case-based reasoning providing the essential building blocks for the designing of case-based reasoning systems, as well as to bring together the main research lines in this field to encourage future students to solve current CBR challenges.

A Concise Introduction to Models and Methods for Automated Planning

Author: Hector Geffner
Publisher: Morgan & Claypool Publishers
ISBN: 9781608459704
Release Date: 2013-06-01
Genre: Computers

Planning is the model-based approach to autonomous behavior where the agent behavior is derived automatically from a model of the actions, sensors, and goals. The main challenges in planning are computational as all models, whether featuring uncertainty and feedback or not, are intractable in the worst case when represented in compact form. In this book, we look at a variety of models used in AI planning, and at the methods that have been developed for solving them. The goal is to provide a modern and coherent view of planning that is precise, concise, and mostly self-contained, without being shallow. For this, we make no attempt at covering the whole variety of planning approaches, ideas, and applications, and focus on the essentials. The target audience of the book are students and researchers interested in autonomous behavior and planning from an AI, engineering, or cognitive science perspective. Table of Contents: Preface / Planning and Autonomous Behavior / Classical Planning: Full Information and Deterministic Actions / Classical Planning: Variations and Extensions / Beyond Classical Planning: Transformations / Planning with Sensing: Logical Models / MDP Planning: Stochastic Actions and Full Feedback / POMDP Planning: Stochastic Actions and Partial Feedback / Discussion / Bibliography / Author's Biography