Martingales in Banach Spaces

Author: Gilles Pisier
Publisher: Cambridge University Press
ISBN: 9781107137240
Release Date: 2016-06-06
Genre: Mathematics

This book focuses on applications of martingales to the geometry of Banach spaces, and is accessible to graduate students.

Analysis in Banach Spaces

Author: Tuomas Hytönen
Publisher: Springer
ISBN: 9783319698083
Release Date: 2018-02-14
Genre: Mathematics

This second volume of Analysis in Banach Spaces, Probabilistic Methods and Operator Theory, is the successor to Volume I, Martingales and Littlewood-Paley Theory. It presents a thorough study of the fundamental randomisation techniques and the operator-theoretic aspects of the theory. The first two chapters address the relevant classical background from the theory of Banach spaces, including notions like type, cotype, K-convexity and contraction principles. In turn, the next two chapters provide a detailed treatment of the theory of R-boundedness and Banach space valued square functions developed over the last 20 years. In the last chapter, this content is applied to develop the holomorphic functional calculus of sectorial and bi-sectorial operators in Banach spaces. Given its breadth of coverage, this book will be an invaluable reference to graduate students and researchers interested in functional analysis, harmonic analysis, spectral theory, stochastic analysis, and the operator-theoretic approach to deterministic and stochastic evolution equations.

Harmonic Analysis Partial Differential Equations Complex Analysis Banach Spaces and Operator Theory Volume 1

Author: María Cristina Pereyra
Publisher: Springer
ISBN: 9783319309613
Release Date: 2016-09-15
Genre: Mathematics

Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book contains survey and expository articles by leading experts in their corresponding fields, and features fully-refereed, high-quality papers exploring new results and trends in spectral theory, mathematical physics, geometric function theory, and partial differential equations. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. Another shared research interest of the contributors of this volume lies in the area of applied harmonic analysis, where a new notion called chromatic derivatives has recently been introduced in communication engineering. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6, 2014. During the event, participants honored the memory of Cora Sadosky—a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional mathematician and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.

Handbook of the Geometry of Banach Spaces

Author:
Publisher: Elsevier
ISBN: 0080532802
Release Date: 2001-08-15
Genre: Mathematics

The Handbook presents an overview of most aspects of modern Banach space theory and its applications. The up-to-date surveys, authored by leading research workers in the area, are written to be accessible to a wide audience. In addition to presenting the state of the art of Banach space theory, the surveys discuss the relation of the subject with such areas as harmonic analysis, complex analysis, classical convexity, probability theory, operator theory, combinatorics, logic, geometric measure theory, and partial differential equations. The Handbook begins with a chapter on basic concepts in Banach space theory which contains all the background needed for reading any other chapter in the Handbook. Each of the twenty one articles in this volume after the basic concepts chapter is devoted to one specific direction of Banach space theory or its applications. Each article contains a motivated introduction as well as an exposition of the main results, methods, and open problems in its specific direction. Most have an extensive bibliography. Many articles contain new proofs of known results as well as expositions of proofs which are hard to locate in the literature or are only outlined in the original research papers. As well as being valuable to experienced researchers in Banach space theory, the Handbook should be an outstanding source for inspiration and information to graduate students and beginning researchers. The Handbook will be useful for mathematicians who want to get an idea of the various developments in Banach space theory.

Introduction to Banach Spaces Analysis and Probability

Author: Daniel Li
Publisher: Cambridge University Press
ISBN: 9781107160514
Release Date: 2017-10-31
Genre: Mathematics

This two-volume text provides a complete overview of the theory of Banach spaces, emphasising its interplay with classical and harmonic analysis (particularly Sidon sets) and probability. The authors give a full exposition of all results, as well as numerous exercises and comments to complement the text and aid graduate students in functional analysis. The book will also be an invaluable reference volume for researchers in analysis. Volume 1 covers the basics of Banach space theory, operatory theory in Banach spaces, harmonic analysis and probability. The authors also provide an annex devoted to compact Abelian groups. Volume 2 focuses on applications of the tools presented in the first volume, including Dvoretzky's theorem, spaces without the approximation property, Gaussian processes, and more. In volume 2, four leading experts also provide surveys outlining major developments in the field since the publication of the original French edition.

L vy Processes and Stochastic Calculus

Author: David Applebaum
Publisher: Cambridge University Press
ISBN: 0521832632
Release Date: 2004-07-05
Genre: Mathematics

Graduate text decsribing two of the main tools for modern mathematical finance.

Ergodic theorems

Author: Ulrich Krengel
Publisher: Walter de Gruyter
ISBN: 3110084783
Release Date: 1985
Genre: Mathematics


New Technical Books

Author: New York Public Library
Publisher:
ISBN: UOM:39015063566296
Release Date: 1994
Genre: Engineering


The Banach Tarski Paradox

Author: Stan Wagon
Publisher: Cambridge University Press
ISBN: 0521457041
Release Date: 1993-09-24
Genre: Mathematics

This volume explores the consequences of the paradox for measure theory and its connections with group theory, geometry, and logic. It unifies the results of contemporary research on the paradox and presents several new results including some unusual paradoxes in hyperbolic space. It also provides up to date proofs and discusses many unsolved problems.

Multidimensional Stochastic Processes as Rough Paths

Author: Peter K. Friz
Publisher: Cambridge University Press
ISBN: 9781139487214
Release Date: 2010-02-04
Genre: Mathematics

Rough path analysis provides a fresh perspective on Ito's important theory of stochastic differential equations. Key theorems of modern stochastic analysis (existence and limit theorems for stochastic flows, Freidlin-Wentzell theory, the Stroock-Varadhan support description) can be obtained with dramatic simplifications. Classical approximation results and their limitations (Wong-Zakai, McShane's counterexample) receive 'obvious' rough path explanations. Evidence is building that rough paths will play an important role in the future analysis of stochastic partial differential equations and the authors include some first results in this direction. They also emphasize interactions with other parts of mathematics, including Caratheodory geometry, Dirichlet forms and Malliavin calculus. Based on successful courses at the graduate level, this up-to-date introduction presents the theory of rough paths and its applications to stochastic analysis. Examples, explanations and exercises make the book accessible to graduate students and researchers from a variety of fields.