Materials Modelling Using Density Functional Theory

Author: Feliciano Giustino
Publisher: Oxford University Press (UK)
ISBN: 9780199662449
Release Date: 2014
Genre: Science

This book is an introduction to the modern quantum theory of materials, and primarily addresses seniorundergraduate and first-year graduate students in the physical and chemical sciences, and in materials science and engineering. As advanced materials are becoming ubiquitous in every aspect of our life, the use of quantum mechanics to understand, predict, and design new materials is experiencing a fast-paced growth in academic and industrial research.Following this trend, atomistic materials modelling is becoming an important component of undergraduate science education, however there is still no book on this subject written primarily for anundergraduate readership. The book explains the fundamental ideas of density functional theory, and how this theory can be used as a powerful method for explaining and even predicting the properties of materials with stunning accuracy. This book can be used either as a complement to the quantum theory of materials, or as a primer in modern techniques of computational materials modelling using quantum mechanics.

Materials Modelling Using Density Functional Theory

Author: Feliciano Giustino
Publisher: Oxford University Press
ISBN: 9780199662432
Release Date: 2014
Genre: Science

This book is an introduction to the modern quantum theory of materials, and primarily addresses seniorundergraduate and first-year graduate students in the physical and chemical sciences, and in materials science and engineering. As advanced materials are becoming ubiquitous in every aspect of our life, the use of quantum mechanics to understand, predict, and design new materials is experiencing a fast-paced growth in academic and industrial research.Following this trend, atomistic materials modelling is becoming an important component of undergraduate science education, however there is still no book on this subject written primarily for anundergraduate readership. The book explains the fundamental ideas of density functional theory, and how this theory can be used as a powerful method for explaining and even predicting the properties of materials with stunning accuracy. This book can be used either as a complement to the quantum theory of materials, or as a primer in modern techniques of computational materials modelling using quantum mechanics.

Density Functional Theory

Author: David Sholl
Publisher: John Wiley & Sons
ISBN: 9781118211045
Release Date: 2011-09-20
Genre: Science

Demonstrates how anyone in math, science, and engineering can master DFT calculations Density functional theory (DFT) is one of the most frequently used computational tools for studying and predicting the properties of isolated molecules, bulk solids, and material interfaces, including surfaces. Although the theoretical underpinnings of DFT are quite complicated, this book demonstrates that the basic concepts underlying the calculations are simple enough to be understood by anyone with a background in chemistry, physics, engineering, or mathematics. The authors show how the widespread availability of powerful DFT codes makes it possible for students and researchers to apply this important computational technique to a broad range of fundamental and applied problems. Density Functional Theory: A Practical Introduction offers a concise, easy-to-follow introduction to the key concepts and practical applications of DFT, focusing on plane-wave DFT. The authors have many years of experience introducing DFT to students from a variety of backgrounds. The book therefore offers several features that have proven to be helpful in enabling students to master the subject, including: Problem sets in each chapter that give readers the opportunity to test their knowledge by performing their own calculations Worked examples that demonstrate how DFT calculations are used to solve real-world problems Further readings listed in each chapter enabling readers to investigate specific topics in greater depth This text is written at a level suitable for individuals from a variety of scientific, mathematical, and engineering backgrounds. No previous experience working with DFT calculations is needed.

Density Functional Theory

Author: Eberhard Engel
Publisher: Springer Science & Business Media
ISBN: 3642140904
Release Date: 2011-02-14
Genre: Science

Density Functional Theory (DFT) has firmly established itself as the workhorse for atomic-level simulations of condensed phases, pure or composite materials and quantum chemical systems. This work offers a rigorous and detailed introduction to the foundations of this theory, up to and including such advanced topics as orbital-dependent functionals as well as both time-dependent and relativistic DFT. Given the many ramifications of contemporary DFT, the text concentrates on the self-contained presentation of the basics of the most widely used DFT variants: this implies a thorough discussion of the corresponding existence theorems and effective single particle equations, as well as of key approximations utilized in implementations. The formal results are complemented by selected quantitative results, which primarily aim at illustrating the strengths and weaknesses of particular approaches or functionals. The structure and content of this book allow a tutorial and modular self-study approach: the reader will find that all concepts of many-body theory which are indispensable for the discussion of DFT - such as the single-particle Green's function or response functions - are introduced step by step, along with the actual DFT material. The same applies to basic notions of solid state theory, such as the Fermi surface of inhomogeneous, interacting systems. In fact, even the language of second quantization is introduced systematically in an Appendix for readers without formal training in many-body theory.

Computational Materials Science

Author: June Gunn Lee
Publisher: CRC Press
ISBN: 9781498749763
Release Date: 2016-11-25
Genre: Science

This book covers the essentials of Computational Science and gives tools and techniques to solve materials science problems using molecular dynamics (MD) and first-principles methods. The new edition expands upon the density functional theory (DFT) and how the original DFT has advanced to a more accurate level by GGA+U and hybrid-functional methods. It offers 14 new worked examples in the LAMMPS, Quantum Espresso, VASP and MedeA-VASP programs, including computation of stress-strain behavior of Si-CNT composite, mean-squared displacement (MSD) of ZrO2-Y2O3, band structure and phonon spectra of silicon, and Mo-S battery system. It discusses methods once considered too expensive but that are now cost-effective. New examples also include various post-processed results using VESTA, VMD, VTST, and MedeA.

Electronic Structure

Author: Richard M. Martin
Publisher: Cambridge University Press
ISBN: 9781139643658
Release Date: 2004-04-08
Genre: Science

The study of the electronic structure of materials is at a momentous stage, with the emergence of computational methods and theoretical approaches. Many properties of materials can now be determined directly from the fundamental equations for the electrons, providing insights into critical problems in physics, chemistry, and materials science. This book provides a unified exposition of the basic theory and methods of electronic structure, together with instructive examples of practical computational methods and real-world applications. Appropriate for both graduate students and practising scientists, this book describes the approach most widely used today, density functional theory, with emphasis upon understanding the ideas, practical methods and limitations. Many references are provided to original papers, pertinent reviews, and widely available books. Included in each chapter is a short list of the most relevant references and a set of exercises that reveal salient points and challenge the reader.

Density Functional Theory of Atoms and Molecules

Author: Robert G. Parr
Publisher: OUP USA
ISBN: 9780195092769
Release Date: 1994-05-26
Genre: Political Science

Provides an account of the fundamental principles of the density-functional theory of the electronic structure of matter and its applications to atoms and molecules. This book contains a discussion of the chemical potential and its derivatives. It is intended for physicists, chemists, and advanced students in chemistry.

Introduction to Computational Materials Science

Author: Richard LeSar
Publisher: Cambridge University Press
ISBN: 9781107328143
Release Date: 2013-03-28
Genre: Technology & Engineering

Emphasising essential methods and universal principles, this textbook provides everything students need to understand the basics of simulating materials behaviour. All the key topics are covered from electronic structure methods to microstructural evolution, appendices provide crucial background material, and a wealth of practical resources are available online to complete the teaching package. Modelling is examined at a broad range of scales, from the atomic to the mesoscale, providing students with a solid foundation for future study and research. Detailed, accessible explanations of the fundamental equations underpinning materials modelling are presented, including a full chapter summarising essential mathematical background. Extensive appendices, including essential background on classical and quantum mechanics, electrostatics, statistical thermodynamics and linear elasticity, provide the background necessary to fully engage with the fundamentals of computational modelling. Exercises, worked examples, computer codes and discussions of practical implementations methods are all provided online giving students the hands-on experience they need.

Molecular Electronic Structure Theory

Author: Trygve Helgaker
Publisher: John Wiley & Sons
ISBN: 9781119019558
Release Date: 2014-08-11
Genre: Science

Ab initio quantum chemistry has emerged as an important tool in chemical research and is appliced to a wide variety of problems in chemistry and molecular physics. Recent developments of computational methods have enabled previously intractable chemical problems to be solved using rigorous quantum-mechanical methods. This is the first comprehensive, up-to-date and technical work to cover all the important aspects of modern molecular electronic-structure theory. Topics covered in the book include: * Second quantization with spin adaptation * Gaussian basis sets and molecular-integral evaluation * Hartree-Fock theory * Configuration-interaction and multi-configurational self-consistent theory * Coupled-cluster theory for ground and excited states * Perturbation theory for single- and multi-configurational states * Linear-scaling techniques and the fast multipole method * Explicity correlated wave functions * Basis-set convergence and extrapolation * Calibration and benchmarking of computational methods, with applications to moelcular equilibrium structure, atomization energies and reaction enthalpies. Molecular Electronic-Structure Theory makes extensive use of numerical examples, designed to illustrate the strengths and weaknesses of each method treated. In addition, statements about the usefulness and deficiencies of the various methods are supported by actual examples, not just model calculations. Problems and exercises are provided at the end of each chapter, complete with hints and solutions. This book is a must for researchers in the field of quantum chemistry as well as for nonspecialists who wish to acquire a thorough understanding of ab initio molecular electronic-structure theory and its applications to problems in chemistry and physics. It is also highly recommended for the teaching of graduates and advanced undergraduates.

Electronic Structure Calculations for Solids and Molecules

Author: Jorge Kohanoff
Publisher: Cambridge University Press
ISBN: 9781139453486
Release Date: 2006-06-29
Genre: Science

Electronic structure problems are studied in condensed matter physics and theoretical chemistry to provide important insights into the properties of matter. This 2006 graduate textbook describes the main theoretical approaches and computational techniques, from the simplest approximations to the most sophisticated methods. It starts with a detailed description of the various theoretical approaches to calculating the electronic structure of solids and molecules, including density-functional theory and chemical methods based on Hartree-Fock theory. The basic approximations are thoroughly discussed, and an in-depth overview of recent advances and alternative approaches in DFT is given. The second part discusses the different practical methods used to solve the electronic structure problem computationally, for both DFT and Hartree-Fock approaches. Adopting a unique and open approach, this textbook is aimed at graduate students in physics and chemistry, and is intended to improve communication between these communities. It also serves as a reference for researchers entering the field.

Recent Developments and Applications of Modern Density Functional Theory

Author: Jorge M. Seminario
Publisher: Elsevier
ISBN: 0080540392
Release Date: 1996-11-18
Genre: Science

The present status of Density Functional Theory (DFT), which has evolved as the main technique for the study of matter at the atomistic level, is described in this volume. Knowing the behavior of atoms and molecules provides a sure avenue for the design of new materials with specific features and properties in many areas of science and technology. A technique based on purely first principles allowing large savings in time and money greatly benefits the specialist or designer of new materials. The range of areas where DFT is applied has expanded and continues to do so. Any area where a molecular system is the center of attention can be studied using DFT.The scope of the 22 chapters in this book amply testifies to this.

Density Functional Theory

Author: Joseph Morin
Publisher: Nova Science Pub Incorporated
ISBN: 1624179541
Release Date: 2013-01-01
Genre: Science

Density Functional Theory (DFT) is a quantum mechanical modelling method, used in physics and chemistry to investigate the electronic structure (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. This book provides current research in the study of the principles, applications and analysis of Density Functional Theory (DFT). Topics discussed include density functional treatment of interactions and chemical reactions at interfaces; applications of DFT calculations to lithium carbenoids and magnesium carbenoids; thermoelectric properties of low-dimensional materials by DFT; using DFT computations on the radical scavenging activity studies of natural phenolic compounds; polarisability of C60/C70 fullerene [2+1]- and [1+1]-adducts; DFT application to the calculation of properties of di- and trimethylnaphthalenes; transport calculations of organic materials; the evolution of DFT; the capabilities of DFT for materials design of alloys; and the fundamentals of energy density functionality in nuclear physics.

Atomic and Electronic Structure of Solids

Author: Efthimios Kaxiras
Publisher: Cambridge University Press
ISBN: 0521523397
Release Date: 2003-01-09
Genre: Science

Graduate-level textbook for physicists, chemists and materials scientists.

Time Dependent Density Functional Theory

Author: Carsten Ullrich
Publisher: Oxford University Press
ISBN: 9780199563029
Release Date: 2012
Genre: Science

Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.

Advanced Calculations for Defects in Materials

Author: Audrius Alkauskas
Publisher: John Wiley & Sons
ISBN: 9783527638536
Release Date: 2011-05-16
Genre: Science

This book investigates the possible ways of improvement by applying more sophisticated electronic structure methods as well as corrections and alternatives to the supercell model. In particular, the merits of hybrid and screened functionals, as well as of the +U methods are assessed in comparison to various perturbative and Quantum Monte Carlo many body theories. The inclusion of excitonic effects is also discussed by way of solving the Bethe-Salpeter equation or by using time-dependent DFT, based on GW or hybrid functional calculations. Particular attention is paid to overcome the side effects connected to finite size modeling. The editors are well known authorities in this field, and very knowledgeable of past developments as well as current advances. In turn, they have selected respected scientists as chapter authors to provide an expert view of the latest advances. The result is a clear overview of the connections and boundaries between these methods, as well as the broad criteria determining the choice between them for a given problem. Readers will find various correction schemes for the supercell model, a description of alternatives by applying embedding techniques, as well as algorithmic improvements allowing the treatment of an ever larger number of atoms at a high level of sophistication.