Author: Steven R. Finch
Publisher: Cambridge University Press
ISBN: 0521818052
Release Date: 2003-08-18
Genre: Mathematics

Steven Finch provides 136 essays, each devoted to a mathematical constant or a class of constants, from the well known to the highly exotic. This book is helpful both to readers seeking information about a specific constant, and to readers who desire a panoramic view of all constants coming from a particular field, for example, combinatorial enumeration or geometric optimization. Unsolved problems appear virtually everywhere as well. This work represents an outstanding scholarly attempt to bring together all significant mathematical constants in one place.

Author: Richard A. Brualdi
Publisher: Birkhäuser
ISBN: 9783319709536
Release Date: 2018-03-31
Genre: Mathematics

This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

Author: H. M. Srivastava
Publisher: Elsevier
ISBN: 9780123852182
Release Date: 2012
Genre: Mathematics

Zeta and q-Zeta Functions and Associated Series and Integrals is a thoroughly revised, enlarged and updated version of Series Associated with the Zeta and Related Functions. Many of the chapters and sections of the book have been significantly modified or rewritten, and a new chapter on the theory and applications of the basic (or q-) extensions of various special functions is included. This book will be invaluable because it covers not only detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions, but stimulating historical accounts of a large number of problems and well-classified tables of series and integrals. Detailed and systematic presentations of the theory and applications of the various methods and techniques used in dealing with many different classes of series and integrals associated with the Zeta and related functions

Author: George Boros
Publisher: Cambridge University Press
ISBN: 0521796369
Release Date: 2004-06-21
Genre: Mathematics

The problem of evaluating integrals is well known to every student who has had a year of calculus. It was an especially important subject in nineteenth century analysis and it has now been revived with the appearance of symbolic languages. The authors use the problem of exact evaluation of definite integrals as a starting point for exploring many areas of mathematics. The questions discussed are as old as calculus itself. In presenting the combination of methods required for the evaluation of most integrals, the authors take the most interesting-rather than the shortest-path to the results. They illuminate connections with many subjects, including analysis, number theory, algebra and combinatorics. This is a guided tour of exciting discovery for undergraduates and their teachers in mathematics, computer science, physics, and engineering.

This practically-oriented textbook presents an accessible introduction to discrete mathematics through a substantial collection of classroom-tested exercises. Each chapter opens with concise coverage of the theory underlying the topic, reviewing the basic concepts and establishing the terminology, as well as providing the key formulae and instructions on their use. This is then followed by a detailed account of the most common problems in the area, before the reader is invited to practice solving such problems for themselves through a varied series of questions and assignments. Topics and features: provides an extensive set of exercises and examples of varying levels of complexity, suitable for both laboratory practical training and self-study; offers detailed solutions to many problems, applying commonly-used methods and computational schemes; introduces the fundamentals of mathematical logic, the theory of algorithms, Boolean algebra, graph theory, sets, relations, functions, and combinatorics; presents more advanced material on the design and analysis of algorithms, including asymptotic analysis, and parallel algorithms; includes reference lists of trigonometric and finite summation formulae in an appendix, together with basic rules for differential and integral calculus. This hands-on study guide is designed to address the core needs of undergraduate students training in computer science, informatics, and electronic engineering, emphasizing the skills required to develop and implement an algorithm in a specific programming language.

Author: Barry Simon
Publisher: American Mathematical Soc.
ISBN: 9781470411008
Release Date: 2015-11-02
Genre: Mathematical analysis

A Comprehensive Course in Analysis by Poincaré Prize winner Barry Simon is a five-volume set that can serve as a graduate-level analysis textbook with a lot of additional bonus information, including hundreds of problems and numerous notes that extend the text and provide important historical background. Depth and breadth of exposition make this set a valuable reference source for almost all areas of classical analysis. Part 2A is devoted to basic complex analysis. It interweaves three analytic threads associated with Cauchy, Riemann, and Weierstrass, respectively. Cauchy's view focuses on the differential and integral calculus of functions of a complex variable, with the key topics being the Cauchy integral formula and contour integration. For Riemann, the geometry of the complex plane is central, with key topics being fractional linear transformations and conformal mapping. For Weierstrass, the power series is king, with key topics being spaces of analytic functions, the product formulas of Weierstrass and Hadamard, and the Weierstrass theory of elliptic functions. Subjects in this volume that are often missing in other texts include the Cauchy integral theorem when the contour is the boundary of a Jordan region, continued fractions, two proofs of the big Picard theorem, the uniformization theorem, Ahlfors's function, the sheaf of analytic germs, and Jacobi, as well as Weierstrass, elliptic functions.

Author: Eric W. Weisstein
Publisher: CRC Press
ISBN: 9781420035223
Release Date: 2002-12-12
Genre: Mathematics

Upon publication, the first edition of the CRC Concise Encyclopedia of Mathematics received overwhelming accolades for its unparalleled scope, readability, and utility. It soon took its place among the top selling books in the history of Chapman & Hall/CRC, and its popularity continues unabated. Yet also unabated has been the dedication of author Eric Weisstein to collecting, cataloging, and referencing mathematical facts, formulas, and definitions. He has now updated most of the original entries and expanded the Encyclopedia to include 1000 additional pages of illustrated entries. The accessibility of the Encyclopedia along with its broad coverage and economical price make it attractive to the widest possible range of readers and certainly a must for libraries, from the secondary to the professional and research levels. For mathematical definitions, formulas, figures, tabulations, and references, this is simply the most impressive compendium available.

Author: Steven R. Finch
Publisher: Cambridge University Press
ISBN: 1108470599
Release Date: 2018-10-31
Genre: Mathematics

Famous mathematical constants include the ratio of circular circumference to diameter, π = 3.14 ..., and the natural logarithm base, e = 2.178 .... Students and professionals can often name a few others, but there are many more buried in the literature and awaiting discovery. How do such constants arise, and why are they important? Here the author renews the search he began in his book Mathematical Constants, adding another 133 essays that broaden the landscape. Topics include the minimality of soap film surfaces, prime numbers, elliptic curves and modular forms, Poisson-Voronoi tessellations, random triangles, Brownian motion, uncertainty inequalities, Prandtl-Blasius flow (from fluid dynamics), Lyapunov exponents, knots and tangles, continued fractions, Galton-Watson trees, electrical capacitance (from potential theory), Zermelo's navigation problem, and the optimal control of a pendulum. Unsolved problems appear virtually everywhere as well. This volume continues an outstanding scholarly attempt to bring together all significant mathematical constants in one place.

With wit and clarity, the authors progress from simple arithmetic to calculus and non-Euclidean geometry. Their subjects: geometry, plane and fancy; puzzles that made mathematical history; tantalizing paradoxes; more. Includes 169 figures.

A classic resource for working with special functions, standard trig, and exponential logarithmic definitions and extensions, it features 29 sets of tables, some to as high as 20 places.

Model theory is concerned with the notions of definition, interpretation and structure in a very general setting, and is applied to a wide range of other areas such as set theory, geometry, algebra and computer science. This book provides an integrated introduction to model theory for graduate students.