## Mathematical Logic

Author: J.D. Monk
Publisher: Springer Science & Business Media
ISBN: 9781468494525
Release Date: 2012-12-06
Genre: Mathematics

From the Introduction: "We shall base our discussion on a set-theoretical foundation like that used in developing analysis, or algebra, or topology. We may consider our task as that of giving a mathematical analysis of the basic concepts of logic and mathematics themselves. Thus we treat mathematical and logical practice as given empirical data and attempt to develop a purely mathematical theory of logic abstracted from these data." There are 31 chapters in 5 parts and approximately 320 exercises marked by difficulty and whether or not they are necessary for further work in the book.

## An Algebraic Introduction to Mathematical Logic

Author: Donald Barnes
Publisher: Springer Science & Business Media
ISBN: 9781475744897
Release Date: 2013-06-29
Genre: Mathematics

This book is intended for mathematicians. Its origins lie in a course of lectures given by an algebraist to a class which had just completed a sub stantial course on abstract algebra. Consequently, our treatment ofthe sub ject is algebraic. Although we assurne a reasonable level of sophistication in algebra, the text requires little more than the basic notions of group, ring, module, etc. A more detailed knowledge of algebra is required for some of . the exercises. We also assurne a familiarity with the main ideas of set theory, including cardinal numbers and Zorn's Lemma. In this book, we carry out a mathematical study of the logic used in mathematics. We do this by constructing a mathematical model oflogic and applying mathematics to analyse the properties of the model. We therefore regard all our existing knowledge of mathematics as being applicable to the analysis of the model, and in particular we accept set theory as part of the meta-Ianguage. We are not attempting to construct a foundation on which all mathematics is to be based-rather, any conclusions to be drawn about the foundations of mathematics co me only by analogy with the model, and are to be regarded in much the same way as the conclusions drawn from any scientific theory.

## A Course in Mathematical Logic

Author: Yu.I. Manin
Publisher: Springer Science & Business Media
ISBN: 9781475743852
Release Date: 2013-06-29
Genre: Mathematics

1. This book is above all addressed to mathematicians. It is intended to be a textbook of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last ten or fifteen years. These include: the independence of the continuum hypothe sis, the Diophantine nature of enumerable sets, the impossibility of finding an algorithmic solution for one or two old problems. All the necessary preliminary material, including predicate logic and the fundamentals of recursive function theory, is presented systematically and with complete proofs. We only assume that the reader is familiar with "naive" set theoretic arguments. In this book mathematical logic is presented both as a part of mathe matics and as the result of its self-perception. Thus, the substance of the book consists of difficult proofs of subtle theorems, and the spirit of the book consists of attempts to explain what these theorems say about the mathematical way of thought. Foundational problems are for the most part passed over in silence. Most likely, logic is capable of justifying mathematics to no greater extent than biology is capable of justifying life. 2. The first two chapters are devoted to predicate logic. The presenta tion here is fairly standard, except that semantics occupies a very domi nant position, truth is introduced before deducibility, and models of speech in formal languages precede the systematic study of syntax.

## Fundamentals of Mathematical Logic

Author: Peter G. Hinman
Publisher: CRC Press
ISBN: 9781439864272
Release Date: 2005-09-09
Genre: Mathematics

This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.

## A Course on Mathematical Logic

Author: Shashi Mohan Srivastava
Publisher: Springer Science & Business Media
ISBN: 9781461457466
Release Date: 2013-01-16
Genre: Mathematics

This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.

## Axiomatic Set Theory

Author: G. Takeuti
Publisher: Springer Science & Business Media
ISBN: 9781468487510
Release Date: 2013-12-01
Genre: Mathematics

This text deals with three basic techniques for constructing models of Zermelo-Fraenkel set theory: relative constructibility, Cohen's forcing, and Scott-Solovay's method of Boolean valued models. Our main concern will be the development of a unified theory that encompasses these techniques in one comprehensive framework. Consequently we will focus on certain funda mental and intrinsic relations between these methods of model construction. Extensive applications will not be treated here. This text is a continuation of our book, "I ntroduction to Axiomatic Set Theory," Springer-Verlag, 1971; indeed the two texts were originally planned as a single volume. The content of this volume is essentially that of a course taught by the first author at the University of Illinois in the spring of 1969. From the first author's lectures, a first draft was prepared by Klaus Gloede with the assistance of Donald Pelletier and the second author. This draft was then rcvised by the first author assisted by Hisao Tanaka. The introductory material was prepared by the second author who was also responsible for the general style of exposition throughout the text. We have inc1uded in the introductory material al1 the results from Boolean algebra and topology that we need. When notation from our first volume is introduced, it is accompanied with a deflnition, usually in a footnote. Consequently a reader who is familiar with elementary set theory will find this text quite self-contained.

## Classical Descriptive Set Theory

Author: Alexander Kechris
Publisher: Springer Science & Business Media
ISBN: 9781461241904
Release Date: 2012-12-06
Genre: Mathematics

Descriptive set theory has been one of the main areas of research in set theory for almost a century. This text presents a largely balanced approach to the subject, which combines many elements of the different traditions. It includes a wide variety of examples, more than 400 exercises, and applications, in order to illustrate the general concepts and results of the theory.

## Mathematical Logic and Model Theory

Author: Alexander Prestel
Publisher: Springer Science & Business Media
ISBN: 9781447121763
Release Date: 2011-08-21
Genre: Mathematics

Mathematical Logic and Model Theory: A Brief Introduction offers a streamlined yet easy-to-read introduction to mathematical logic and basic model theory. It presents, in a self-contained manner, the essential aspects of model theory needed to understand model theoretic algebra. As a profound application of model theory in algebra, the last part of this book develops a complete proof of Ax and Kochen's work on Artin's conjecture about Diophantine properties of p-adic number fields. The character of model theoretic constructions and results differ quite significantly from that commonly found in algebra, by the treatment of formulae as mathematical objects. It is therefore indispensable to first become familiar with the problems and methods of mathematical logic. Therefore, the text is divided into three parts: an introduction into mathematical logic (Chapter 1), model theory (Chapters 2 and 3), and the model theoretic treatment of several algebraic theories (Chapter 4). This book will be of interest to both advanced undergraduate and graduate students studying model theory and its applications to algebra. It may also be used for self-study.

## Introduction to Axiomatic Set Theory

Author: G. Takeuti
Publisher: Springer Science & Business Media
ISBN: 9781468499155
Release Date: 2013-12-01
Genre: Mathematics

In 1963, the first author introduced a course in set theory at the Uni versity of Illinois whose main objectives were to cover G6del's work on the consistency of the axiom of choice (AC) and the generalized con tinuum hypothesis (GCH), and Cohen's work on the independence of AC and the GCH. Notes taken in 1963 by the second author were the taught by him in 1966, revised extensively, and are presented here as an introduction to axiomatic set theory. Texts in set theory frequently develop the subject rapidly moving from key result to key result and suppressing many details. Advocates of the fast development claim at least two advantages. First, key results are highlighted, and second, the student who wishes to master the sub ject is compelled to develop the details on his own. However, an in structor using a "fast development" text must devote much class time to assisting his students in their efforts to bridge gaps in the text. We have chosen instead a development that is quite detailed and complete. For our slow development we claim the following advantages. The text is one from which a student can learn with little supervision and instruction. This enables the instructor to use class time for the presentation of alternative developments and supplementary material.

## Notes on Logic and Set Theory

Author: P. T. Johnstone
Publisher: Cambridge University Press
ISBN: 0521336929
Release Date: 1987-10-08
Genre: Mathematics

A succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. Suitable for all introductory mathematics undergraduates, Notes on Logic and Set Theory covers the basic concepts of logic: first-order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. Successive chapters examine the recursive functions, the axiom of choice, ordinal and cardinal arithmetic, and the incompleteness theorems. Dr. Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics.

## A Course in Model Theory

Author: Bruno Poizat
Publisher: Springer Science & Business Media
ISBN: 9781441986221
Release Date: 2012-12-06
Genre: Mathematics

Translated from the French, this book is an introduction to first-order model theory. Starting from scratch, it quickly reaches the essentials, namely, the back-and-forth method and compactness, which are illustrated with examples taken from algebra. It also introduces logic via the study of the models of arithmetic, and it gives complete but accessible exposition of stability theory.

## An Introduction to Mathematical Logic

Author: Richard E. Hodel
Publisher: Courier Corporation
ISBN: 9780486497853
Release Date: 2013
Genre: Mathematics

This comprehensive overview ofmathematical logic is designedprimarily for advanced undergraduatesand graduate studentsof mathematics. The treatmentalso contains much of interest toadvanced students in computerscience and philosophy. Topics include propositional logic;first-order languages and logic; incompleteness, undecidability,and indefinability; recursive functions; computability;and Hilbert’s Tenth Problem.Reprint of the PWS Publishing Company, Boston, 1995edition.

## An Introduction to Mathematical Logic and Type Theory

Author: Peter B. Andrews
Publisher: Springer Science & Business Media
ISBN: 9789401599344
Release Date: 2013-04-17
Genre: Mathematics

In case you are considering to adopt this book for courses with over 50 students, please contact [email protected] for more information. This introduction to mathematical logic starts with propositional calculus and first-order logic. Topics covered include syntax, semantics, soundness, completeness, independence, normal forms, vertical paths through negation normal formulas, compactness, Smullyan's Unifying Principle, natural deduction, cut-elimination, semantic tableaux, Skolemization, Herbrand's Theorem, unification, duality, interpolation, and definability. The last three chapters of the book provide an introduction to type theory (higher-order logic). It is shown how various mathematical concepts can be formalized in this very expressive formal language. This expressive notation facilitates proofs of the classical incompleteness and undecidability theorems which are very elegant and easy to understand. The discussion of semantics makes clear the important distinction between standard and nonstandard models which is so important in understanding puzzling phenomena such as the incompleteness theorems and Skolem's Paradox about countable models of set theory. Some of the numerous exercises require giving formal proofs. A computer program called ETPS which is available from the web facilitates doing and checking such exercises. Audience: This volume will be of interest to mathematicians, computer scientists, and philosophers in universities, as well as to computer scientists in industry who wish to use higher-order logic for hardware and software specification and verification.

## Handbook of Mathematical Logic

Author: J. Barwise
Publisher: Elsevier
ISBN: 0080933645
Release Date: 1982-03-01
Genre: Mathematics

The handbook is divided into four parts: model theory, set theory, recursion theory and proof theory. Each of the four parts begins with a short guide to the chapters that follow. Each chapter is written for non-specialists in the field in question. Mathematicians will find that this book provides them with a unique opportunity to apprise themselves of developments in areas other than their own.

## A Course in Mathematical Logic for Mathematicians

Author: Yu. I. Manin
Publisher: Springer Science & Business Media
ISBN: 9781441906151
Release Date: 2009-10-13
Genre: Mathematics

1. The ?rst edition of this book was published in 1977. The text has been well received and is still used, although it has been out of print for some time. In the intervening three decades, a lot of interesting things have happened to mathematical logic: (i) Model theory has shown that insights acquired in the study of formal languages could be used fruitfully in solving old problems of conventional mathematics. (ii) Mathematics has been and is moving with growing acceleration from the set-theoretic language of structures to the language and intuition of (higher) categories, leaving behind old concerns about in?nities: a new view of foundations is now emerging. (iii) Computer science, a no-nonsense child of the abstract computability theory, has been creatively dealing with old challenges and providing new ones, such as the P/NP problem. Planning additional chapters for this second edition, I have decided to focus onmodeltheory,the conspicuousabsenceofwhichinthe ?rsteditionwasnoted in several reviews, and the theory of computation, including its categorical and quantum aspects. The whole Part IV: Model Theory, is new. I am very grateful to Boris I. Zilber, who kindly agreed to write it. It may be read directly after Chapter II. The contents of the ?rst edition are basically reproduced here as Chapters I–VIII. Section IV.7, on the cardinality of the continuum, is completed by Section IV.7.3, discussing H. Woodin’s discovery.