Mathematics for Physicists

Author: Brian R. Martin
Publisher: John Wiley & Sons
ISBN: 9781118676615
Release Date: 2015-04-23
Genre: Science

Mathematics for Physicists is a relatively short volume covering all the essential mathematics needed for a typical first degree in physics, from a starting point that is compatible with modern school mathematics syllabuses. Early chapters deliberately overlap with senior school mathematics, to a degree that will depend on the background of the individual reader, who may quickly skip over those topics with which he or she is already familiar. The rest of the book covers the mathematics that is usually compulsory for all students in their first two years of a typical university physics degree, plus a little more. There are worked examples throughout the text, and chapter-end problem sets. Mathematics for Physicists features: Interfaces with modern school mathematics syllabuses All topics usually taught in the first two years of a physics degree Worked examples throughout Problems in every chapter, with answers to selected questions at the end of the book and full solutions on a website This text will be an excellent resource for undergraduate students in physics and a quick reference guide for more advanced students, as well as being appropriate for students in other physical sciences, such as astronomy, chemistry and earth sciences.

Vibrations and Waves

Author: A.P. French
Publisher: CRC Press
ISBN: 9781351989893
Release Date: 2017-12-21
Genre: Science

The M.I.T. Introductory Physics Series is the result of a program of careful study, planning, and development that began in 1960. The Education Research Center at the Massachusetts Institute of Technology (formerly the Science Teaching Center) was established to study the process of instruction, aids thereto, and the learning process itself, with special reference to science teaching at the university level. Generous support from a number of foundations provided the means for assembling and maintaining an experienced staff to co-operate with members of the Institute's Physics Department in the examination, improvement, and development of physics curriculum materials for students planning careers in the sciences. After careful analysis of objectives and the problems involved, preliminary versions of textbooks were prepared, tested through classroom use at M.I.T. and other institutions, re-evaluated, rewritten, and tried again. Only then were the final manuscripts undertaken.

Dynamics and Relativity

Author: Jeffrey Forshaw
Publisher: John Wiley & Sons
ISBN: 9781118933299
Release Date: 2014-05-20
Genre: Science

A new title in the Manchester Physics Series, this introductory text emphasises physical principles behind classical mechanics and relativity. It assumes little in the way of prior knowledge, introducing relevant mathematics and carefully developing it within a physics context. Designed to provide a logical development of the subject, the book is divided into four sections, introductory material on dynamics, and special relativity, which is then followed by more advanced coverage of dynamics and special relativity. Each chapter includes problems ranging in difficulty from simple to challenging with solutions for solving problems. Includes solutions for solving problems Numerous worked examples included throughout the book Mathematics is carefully explained and developed within a physics environment Sensitive to topics that can appear daunting or confusing

Mathematics for Physicists and Engineers

Author: Klaus Weltner
Publisher: Springer
ISBN: 9783642541247
Release Date: 2014-06-27
Genre: Science

This textbook offers an accessible approach to the subject of mathematics which divides the topic into smaller units, guiding students through questions, exercises and problems designed to slowly increase student confidence and experience. The sequence of studies is individualised according to performance and can be regarded as full tutorial course. The study guide satisfies two objectives simultaneously: firstly it enables students to make effective use of the textbook and secondly it offers advice on the improvement of study skills. Empirical studies have shown that the student's competence for using written information has improved significantly by using this study guide. The new edition includes a new chapter on Fourier integrals and Fourier transforms, numerous sections had been updated, 30 new problems with solutions had been added. The interactive study guide has seen a substantial update.

Mathematics for Physics

Author: Michael M. Woolfson
Publisher: Oxford University Press
ISBN: 0199289298
Release Date: 2007
Genre: Mathematics

Mathematics is the essential language of science. It enables us to describe abstract physical concepts, and to apply these concepts in practical ways. Yet mathematical skills and concepts are an aspect of physics that many students fear the most. Mathematics for Physics recognizes the challenges faced by students in equipping themselves with the maths skills necessary to gain a full understanding of physics. Working from basic yet fundamental principles, the book builds the students' confidence by leading them through the subject in a steady, progressive way. As its primary aim, Mathematics for Physics shows the relevance of mathematics to the study of physics. Its unique approach demonstrates the application of mathematical concepts alongside the development of the mathematical theory. This stimulating and motivating approach helps students to master the maths and see its application in the context of physics in one seamless learning experience. Mathematics is a subject mastered most readily through active learning. Mathematics for Physics features both print and online support, with many in-text exercises and end-of-chapter problems, and web-based computer programs, to both stimulate learning and build understanding. Mathematics for Physics is the perfect introduction to the essential mathematical concepts which all physics students should master. Online Resource Centre: For lecturers: Figures from the book available to download, to facilitate lecture preparation For students: 23 computer programs, coded in FORTRAN, C, and MATLAB, to enable students to investigate and solve a range of problems - from the behaviour of clusters of stars to the design of nuclear reactors - and hence make learning as effective and engaging as possible.

Mathematics for Physics

Author: Michael Stone
Publisher: Cambridge University Press
ISBN: 9781139480611
Release Date: 2009-07-09
Genre: Science

An engagingly-written account of mathematical tools and ideas, this book provides a graduate-level introduction to the mathematics used in research in physics. The first half of the book focuses on the traditional mathematical methods of physics – differential and integral equations, Fourier series and the calculus of variations. The second half contains an introduction to more advanced subjects, including differential geometry, topology and complex variables. The authors' exposition avoids excess rigor whilst explaining subtle but important points often glossed over in more elementary texts. The topics are illustrated at every stage by carefully chosen examples, exercises and problems drawn from realistic physics settings. These make it useful both as a textbook in advanced courses and for self-study. Password-protected solutions to the exercises are available to instructors at

Modern Particle Physics

Author: Mark Thomson
Publisher: Cambridge University Press
ISBN: 9781107292543
Release Date: 2013-09-05
Genre: Science

Unique in its coverage of all aspects of modern particle physics, this textbook provides a clear connection between the theory and recent experimental results, including the discovery of the Higgs boson at CERN. It provides a comprehensive and self-contained description of the Standard Model of particle physics suitable for upper-level undergraduate students and graduate students studying experimental particle physics. Physical theory is introduced in a straightforward manner with full mathematical derivations throughout. Fully-worked examples enable students to link the mathematical theory to results from modern particle physics experiments. End-of-chapter exercises, graded by difficulty, provide students with a deeper understanding of the subject. Online resources available at feature password-protected fully-worked solutions to problems for instructors, numerical solutions and hints to the problems for students and PowerPoint slides and JPEGs of figures from the book.


Author: Boas
Publisher: John Wiley & Sons
ISBN: 8126508108
Release Date: 2006-09-01
Genre: Mathematics

Market_Desc: · Physicists and Engineers· Students in Physics and Engineering Special Features: · Covers everything from Linear Algebra, Calculus, Analysis, Probability and Statistics, to ODE, PDE, Transforms and more· Emphasizes intuition and computational abilities· Expands the material on DE and multiple integrals· Focuses on the applied side, exploring material that is relevant to physics and engineering· Explains each concept in clear, easy-to-understand steps About The Book: The book provides a comprehensive introduction to the areas of mathematical physics. It combines all the essential math concepts into one compact, clearly written reference. This book helps readers gain a solid foundation in the many areas of mathematical methods in order to achieve a basic competence in advanced physics, chemistry, and engineering.

Mathematics for Physicists

Author: Philippe Dennery
Publisher: Courier Corporation
ISBN: 9780486157122
Release Date: 2012-06-11
Genre: Science

Superb text provides math needed to understand today's more advanced topics in physics and engineering. Theory of functions of a complex variable, linear vector spaces, much more. Problems. 1967 edition.

Essential Mathematical Methods for the Physical Sciences

Author: K. F. Riley
Publisher: Cambridge University Press
ISBN: 9781139492942
Release Date: 2011-02-17
Genre: Science

The mathematical methods that physical scientists need for solving substantial problems in their fields of study are set out clearly and simply in this tutorial-style textbook. Students will develop problem-solving skills through hundreds of worked examples, self-test questions and homework problems. Each chapter concludes with a summary of the main procedures and results and all assumed prior knowledge is summarized in one of the appendices. Over 300 worked examples show how to use the techniques and around 100 self-test questions in the footnotes act as checkpoints to build student confidence. Nearly 400 end-of-chapter problems combine ideas from the chapter to reinforce the concepts. Hints and outline answers to the odd-numbered problems are given at the end of each chapter, with fully-worked solutions to these problems given in the accompanying Student Solutions Manual. Fully-worked solutions to all problems, password-protected for instructors, are available at

Biomedical Applications for Introductory Physics

Author: J. A. Tuszynski
Publisher: John Wiley & Sons Incorporated
ISBN: UOM:39015054270742
Release Date: 2002
Genre: Medical

Designed as a supplement for either Algebra or Calculus-Based Introductory Physics, Tuszinski offers a wide breadth of biomedical applications plus an emphasis upon quantitative problem-solving. The hundreds of applications in the book are organized according to the standard introductory course syllabus; their variety is intended to show life science and allied health students the relevance of Physics to their future academic and professional careers.

Introduction to Experimental Particle Physics

Author: Richard C. Fernow
Publisher: Cambridge University Press
ISBN: 0521379407
Release Date: 1989-03-31
Genre: Science

A concise, balanced overview of the most important topics in experimental particle physics of the past forty years is presented in this comprehensive study. Beginning with a review of particle physics and electromagnetic and nuclear interactions, the book continues with a discussion of three nearly universal aspects of particle physics experiments: beams, targets and fast electrons. The second part of the text details the properties of various types of particle detectors, such as scintillation and Cerenkov counters, proportional and drift chambers, sampling calorimeters, and special detectors. The last chapter demonstrates how the various aspects of the previous chapters can be integrated in an experimental system. There are numerous references to the research literature, in addition to examples and workable problems.

Computing for Scientists

Author: R. J. Barlow
Publisher: John Wiley & Sons
ISBN: 0471955965
Release Date: 1998-09-16
Genre: Science

The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Computing for Scientists focuses on the principles involved in scientific programming. Topics of importance and interest to scientists are presented in a thoughtful and thought-provoking way, with coverage ranging from high-level object-oriented software to low-level machine-code operations. Taking a problem-solving approach, this book gives the reader an insight into the ways programs are implemented and what actually happens when they run. Throughout, the importance of good programming style is emphasised and illustrated. Two languages, Fortran 90 and C++, are used to provide contrasting examples, and explain how various techniques are used and when they are appropriate or inappropriate. For scientists and engineers needing to write programs of their own or understand those written by others, Computing for Scientists: * Is a carefully written introduction to programming, taking the reader from the basics to a considerable level of sophistication. * Emphasises an understanding of the principles and the development of good programming skills. * Includes optional "starred" sections containing more specialised and advanced material for the more ambitious reader. * Assumes no prior knowledge, and has many examples and exercises with solutions included at the back of the book.

Statistical Physics

Author: Franz Mandl
Publisher: John Wiley & Sons
ISBN: 9781118723432
Release Date: 2013-06-05
Genre: Science

The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition E. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Statistical Physics, Second Edition develops a unified treatment of statistical mechanics and thermodynamics, which emphasises the statistical nature of the laws of thermodynamics and the atomic nature of matter. Prominence is given to the Gibbs distribution, leading to a simple treatment of quantum statistics and of chemical reactions. Undergraduate students of physics and related sciences will find this a stimulating account of the basic physics and its applications. Only an elementary knowledge of kinetic theory and atomic physics, as well as the rudiments of quantum theory, are presupposed for an understanding of this book. Statistical Physics, Second Edition features: A fully integrated treatment of thermodynamics and statistical mechanics. A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialised material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints for solving the problems are given in an Appendix.

Mathematical Methods for Physicists and Engineers

Author: Royal Eugene Collins
Publisher: Courier Corporation
ISBN: 9780486150123
Release Date: 2012-06-11
Genre: Science

Practical text focuses on fundamental applied math needed to deal with physics and engineering problems: elementary vector calculus, special functions of mathematical physics, calculus of variations, much more. 1968 edition.