Maths from Scratch for Biologists

Author: Alan J. Cann
Publisher: John Wiley & Sons
ISBN: 9781118685709
Release Date: 2013-04-25
Genre: Science

Numerical ability is an essential skill for everyone studying the biological sciences but many students are frightened by the 'perceived' difficulty of mathematics, and are nervous about applying mathematical skills in their chosen field of study. Having taught introductory maths and statistics for many years, Alan Cann understands these challenges and just how invaluable an accessible, confidence building textbook could be to the fearful student. Unable to find a book pitched at the right level, that concentrated on why numerical skills are useful to biologists, he wrote his own. The result is Maths from Scratch for Biologists , a highly instructive, informal text that explains step by step how and why you need to tackle maths within the biological sciences. Features: * An accessible, jargon-busting approach to help readers master basic mathematical, statistical and data handling techniques in biology * Numerous end of chapter problems to reinforce key concepts and encourage students to test their newly acquired skills through practise * A handy, time-saving glossary * A supplementary website with numerous problems and self-test exercises

Mathematics for the Life Sciences

Author: Erin N. Bodine
Publisher: Princeton University Press
ISBN: 9781400852772
Release Date: 2014-08-17
Genre: Mathematics

The life sciences deal with a vast array of problems at different spatial, temporal, and organizational scales. The mathematics necessary to describe, model, and analyze these problems is similarly diverse, incorporating quantitative techniques that are rarely taught in standard undergraduate courses. This textbook provides an accessible introduction to these critical mathematical concepts, linking them to biological observation and theory while also presenting the computational tools needed to address problems not readily investigated using mathematics alone. Proven in the classroom and requiring only a background in high school math, Mathematics for the Life Sciences doesn't just focus on calculus as do most other textbooks on the subject. It covers deterministic methods and those that incorporate uncertainty, problems in discrete and continuous time, probability, graphing and data analysis, matrix modeling, difference equations, differential equations, and much more. The book uses MATLAB throughout, explaining how to use it, write code, and connect models to data in examples chosen from across the life sciences. Provides undergraduate life science students with a succinct overview of major mathematical concepts that are essential for modern biology Covers all the major quantitative concepts that national reports have identified as the ideal components of an entry-level course for life science students Provides good background for the MCAT, which now includes data-based and statistical reasoning Explicitly links data and math modeling Includes end-of-chapter homework problems, end-of-unit student projects, and select answers to homework problems Uses MATLAB throughout, and MATLAB m-files with an R supplement are available online Prepares students to read with comprehension the growing quantitative literature across the life sciences Forthcoming online answer key, solution guide, and illustration package (available to professors)

CatchUp Math and Stats for the Life Sciences

Author: Michael Harris
Publisher: Macmillan
ISBN: 1429205571
Release Date: 2007-08-03
Genre: Science

This primer helps students brush up on the quantitative skills they need to succeed in biology. Presented in brief, accessible units, the book covers topics such as working with powers, logarithms, using and understanding graphs, calculating standard deviation, preparing a dilution series, choosing the right statistical test, analyzing enzyme kinetics, and many more.

Mathematics for Biological Scientists

Author: Mike Aitken
Publisher: Garland Science
ISBN: 9781136843938
Release Date: 2009-09-30
Genre: Science

Mathematics for Biological Scientists is a new undergraduate textbook which covers the mathematics necessary for biology students to understand, interpret and discuss biological questions. The book's twelve chapters are organized into four themes. The first theme covers the basic concepts of mathematics in biology, discussing the mathematics used in biological quantities, processes and structures. The second theme, calculus, extends the language of mathematics to describe change. The third theme is probability and statistics, where the uncertainty and variation encountered in real biological data is described. The fourth theme is explored briefly in the final chapter of the book, which is to show how the 'tools' developed in the first few chapters are used within biology to develop models of biological processes. Mathematics for Biological Scientists fully integrates mathematics and biology with the use of colour illustrations and photographs to provide an engaging and informative approach to the subject of mathematics and statistics within biological science.

Easy Mathematics for Biologists

Author: Peter C. Foster
Publisher: CRC Press
ISBN: 9780203304303
Release Date: 2003-09-02
Genre: Mathematics

Because elementary mathematics is vital to be able to properly design biological experiments and interpret their results. As a student of the life sciences you will only make your life harder by ignoring mathematics entirely. Equally, you do not want to spend your time struggling with complex mathematics that you will never use. This book is the perfect answer to your problems. Inside, it explains the necessary mathematics in easy-to-follow steps, introducing the basics and showing you how to apply these to biological situations. Easy Mathematics for Biologists covers the basic mathematical ideas of fractions, decimals and percentages, through ratio and proportion, exponents and logarithms, to straight line graphs, graphs that are not straight lines, and their transformation. Direct application of each of these leads to a clear understanding of biological calculations such as those involving concentrations and dilutions, changing units, pH, and linear and non-linear rates of reaction. Each chapter contains worked examples, and is followed by numerous problems, both pure and applied, that can be worked through in your own time. Answers to these can be found at the back.

Mathematical Methods in Biology

Author: J. David Logan
Publisher: John Wiley & Sons
ISBN: 9780470525876
Release Date: 2009-08-17
Genre: Mathematics

A one–of–a–kind guide to using deterministic and probabilistic methods for solving problems in the biological sciences Highlighting the growing relevance of quantitative techniques in scientific research, Mathematical Methods in Biology provides an accessible presentation of the broad range of important mathematical methods for solving problems in the biological sciences. The book reveals the growing connections between mathematics and biology through clear explanations and specific, interesting problems from areas such as population dynamics, foraging theory, and life history theory. The authors begin with an introduction and review of mathematical tools that are employed in subsequent chapters, including biological modeling, calculus, differential equations, dimensionless variables, and descriptive statistics. The following chapters examine standard discrete and continuous models using matrix algebra as well as difference and differential equations. Finally, the book outlines probability, statistics, and stochastic methods as well as material on bootstrapping and stochastic differential equations, which is a unique approach that is not offered in other literature on the topic. In order to demonstrate the application of mathematical methods to the biological sciences, the authors provide focused examples from the field of theoretical ecology, which serve as an accessible context for study while also demonstrating mathematical skills that are applicable to many other areas in the life sciences. The book′s algorithms are illustrated using MATLAB®, but can also be replicated using other software packages, including R, Mathematica®, and Maple; however, the text does not require any single computer algebra package. Each chapter contains numerous exercises and problems that range in difficulty, from the basic to more challenging, to assist readers with building their problem–solving skills. Selected solutions are included at the back of the book, and a related Web site features supplemental material for further study. Extensively class–tested to ensure an easy–to–follow format, Mathematical Methods in Biology is an excellent book for mathematics and biology courses at the upper–undergraduate and graduate levels. It also serves as a valuable reference for researchers and professionals working in the fields of biology, ecology, and biomathematics.

A Biologist s Guide to Mathematical Modeling in Ecology and Evolution

Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 9781400840915
Release Date: 2011-09-19
Genre: Science

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

The Structure of Biological Science

Author: Alexander Rosenberg
Publisher: Cambridge University Press
ISBN: 052127561X
Release Date: 1985-01-25
Genre: Philosophy

This book provides a comprehensive guide to the conceptual methodological, and epistemological problems of biology, and treats in depth the major developments in molecular biology and evolutionary theory that have transformed both biology and its philosophy in recent decades. At the same time the work is a sustained argument for a particular philosophy of biology that unifies disparate issues and offers a framework for expectations about the future directions of the life sciences. The argument explores differences between autonomist and anti-autonomist views of biology. The result is a vindication of reductionism, but one that is unexpectedly hollow. For it leaves the exponents of the autonomy of biology from physical science with as much as their view of biology really requires - and rather more than the reductionist might comfortably concede. Professor Rosenberg shows how the problems of the philosophy of biology are interconnected and how their solutions are interdependent, However, this book focuses more on the direct concerns of biologists, rather than the traditional agenda of philosophers' problems about biology. This departure from earlier books on the subject results both in greater understanding and relevance of the philosophy of science to biology as a whole.

The Mathematics of Life

Author: Ian Stewart
Publisher: Basic Books
ISBN: 9780465024407
Release Date: 2011-06-07
Genre: Science

Biologists have long dismissed mathematics as being unable to meaningfully contribute to our understanding of living beings. Within the past ten years, however, mathematicians have proven that they hold the key to unlocking the mysteries of our world--and ourselves. In The Mathematics of Life, Ian Stewart provides a fascinating overview of the vital but little-recognized role mathematics has played in pulling back the curtain on the hidden complexities of the natural world--and how its contribution will be even more vital in the years ahead. In his characteristically clear and entertaining fashion, Stewart explains how mathematicians and biologists have come to work together on some of the most difficult scientific problems that the human race has ever tackled, including the nature and origin of life itself.

An Introduction to the Mathematics of Biology with Computer Algebra Models

Author: Edward K. Yeargers
Publisher: Springer Science & Business Media
ISBN: 9781475710953
Release Date: 2013-12-01
Genre: Mathematics

Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy in mind and have seen profound changes in the outlooks of our science and engineering students: The attitude of "Oh no, another pendulum on a spring problem!," or "Yet one more LCD circuit!" completely disappeared in the face of applications of mathematics in biology. There is a timeliness in calculating a protocol for ad ministering a drug.

Essential Mathematical Biology

Author: Nicholas F. Britton
Publisher: Springer Science & Business Media
ISBN: 9781447100492
Release Date: 2012-12-06
Genre: Mathematics

This self-contained introduction to the fast-growing field of Mathematical Biology is written for students with a mathematical background. It sets the subject in a historical context and guides the reader towards questions of current research interest. A broad range of topics is covered including: Population dynamics, Infectious diseases, Population genetics and evolution, Dispersal, Molecular and cellular biology, Pattern formation, and Cancer modelling. Particular attention is paid to situations where the simple assumptions of homogenity made in early models break down and the process of mathematical modelling is seen in action.

Mathematics for the Life Sciences

Author: Glenn Ledder
Publisher: Springer Science & Business Media
ISBN: 9781461472766
Release Date: 2013-08-29
Genre: Mathematics

​​ ​​ Mathematics for the Life Sciences provides present and future biologists with the mathematical concepts and tools needed to understand and use mathematical models and read advanced mathematical biology books. It presents mathematics in biological contexts, focusing on the central mathematical ideas, and providing detailed explanations. The author assumes no mathematics background beyond algebra and precalculus. Calculus is presented as a one-chapter primer that is suitable for readers who have not studied the subject before, as well as readers who have taken a calculus course and need a review. This primer is followed by a novel chapter on mathematical modeling that begins with discussions of biological data and the basic principles of modeling. The remainder of the chapter introduces the reader to topics in mechanistic modeling (deriving models from biological assumptions) and empirical modeling (using data to parameterize and select models). The modeling chapter contains a thorough treatment of key ideas and techniques that are often neglected in mathematics books. It also provides the reader with a sophisticated viewpoint and the essential background needed to make full use of the remainder of the book, which includes two chapters on probability and its applications to inferential statistics and three chapters on discrete and continuous dynamical systems. The biological content of the book is self-contained and includes many basic biology topics such as the genetic code, Mendelian genetics, population dynamics, predator-prey relationships, epidemiology, and immunology. The large number of problem sets include some drill problems along with a large number of case studies. The latter are divided into step-by-step problems and sorted into the appropriate section, allowing readers to gradually develop complete investigations from understanding the biological assumptions to a complete analysis.

Mathematics in Medicine and the Life Sciences

Author: Frank C. Hoppensteadt
Publisher: Springer Science & Business Media
ISBN: 9781475741315
Release Date: 2013-03-09
Genre: Mathematics

The aim of this book is to introduce the subject of mathematical modeling in the life sciences. It is intended for students of mathematics, the physical sciences, and engineering who are curious about biology. Additionally, it will be useful to students of the life sciences and medicine who are unsatisfied with mere description and who seek an understanding of biological mechanism and dynamics through the use of mathematics. The book will be particularly useful to premedical students, because it will introduce them not only to a collection of mathematical methods but also to an assortment of phenomena involving genetics, epidemics, and the physiology of the heart, lung, and kidney. Because of its introductory character, mathematical prerequisites are kept to a minimum; they involve only what is usually covered in the first semester of a calculus sequence. The authors have drawn on their extensive experience as modelers to select examples which are simple enough to be understood at this elementary level and yet realistic enough to capture the essence of significant biological phenomena drawn from the areas of population dynamics and physiology. Because the models presented are realistic, the book can serve not only as an introduction to mathematical methods but also as a mathematical introduction to the biological material itself. For the student, who enjoys mathematics, such an introduction will be far more stimulating and satisfying than the purely descriptive approach that is traditional in the biological sciences.