Matrix Algebra Useful for Statistics

Author: Shayle R. Searle
Publisher: Wiley-Interscience
ISBN: UCSC:32106018726536
Release Date: 2006-03-20
Genre: Mathematics

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. "This book is intended to teach useful matrix algebra to 'students, teachers, consultants, researchers, and practitioners' in 'statistics and other quantitative methods'.The author concentrates on practical matters, and writes in a friendly and informal style . . . this is a useful and enjoyable book to have at hand." -Biometrics This book is an easy-to-understand guide to matrix algebra and its uses in statistical analysis. The material is presented in an explanatory style rather than the formal theorem-proof format. This self-contained text includes numerous applied illustrations, numerical examples, and exercises.

Matrix Algebra for Applied Economics

Author: Shayle R. Searle
Publisher: Wiley-Interscience
ISBN: 0471322075
Release Date: 2001-09-13
Genre: Mathematics

Coverage of matrix algebra for economists and students of economics Matrix Algebra for Applied Economics explains the important tool of matrix algebra for students of economics and practicing economists. It includes examples that demonstrate the foundation operations of matrix algebra and illustrations of using the algebra for a variety of economic problems. The authors present the scope and basic definitions of matrices, their arithmetic and simple operations, and describe special matrices and their properties, including the analog of division. They provide in-depth coverage of necessary theory and deal with concepts and operations for using matrices in real-life situations. They discuss linear dependence and independence, as well as rank, canonical forms, generalized inverses, eigenroots, and vectors. Topics of prime interest to economists are shown to be simplified using matrix algebra in linear equations, regression, linear models, linear programming, and Markov chains. Highlights include: * Numerous examples of real-world applications * Challenging exercises throughout the book * Mathematics understandable to readers of all backgrounds * Extensive up-to-date reference material Matrix Algebra for Applied Economics provides excellent guidance for advanced undergraduate students and also graduate students. Practicing economists who want to sharpen their skills will find this book both practical and easy-to-read, no matter what their applied interests.

Applied Linear Regression

Author: Sanford Weisberg
Publisher: John Wiley & Sons
ISBN: 9781118594858
Release Date: 2013-11-25
Genre: Mathematics

Praise for the Third Edition "...this is an excellent book which could easily be used as acourse text..." —International Statistical Institute The Fourth Edition of Applied LinearRegression provides a thorough update of the basic theoryand methodology of linear regression modeling. Demonstrating thepractical applications of linear regression analysis techniques,the Fourth Edition uses interesting, real-worldexercises and examples. Stressing central concepts such as model building, understandingparameters, assessing fit and reliability, and drawing conclusions,the new edition illustrates how to develop estimation, confidence,and testing procedures primarily through the use of least squaresregression. While maintaining the accessible appeal of eachprevious edition,Applied Linear Regression, FourthEdition features: Graphical methods stressed in the initial exploratory phase,analysis phase, and summarization phase of an analysis In-depth coverage of parameter estimates in both simple andcomplex models, transformations, and regression diagnostics Newly added material on topics including testing, ANOVA, andvariance assumptions Updated methodology, such as bootstrapping, cross-validationbinomial and Poisson regression, and modern model selectionmethods Applied Linear Regression, Fourth Edition is anexcellent textbook for upper-undergraduate and graduate-levelstudents, as well as an appropriate reference guide forpractitioners and applied statisticians in engineering, businessadministration, economics, and the social sciences.

Matrix Tricks for Linear Statistical Models

Author: Simo Puntanen
Publisher: Springer Science & Business Media
ISBN: 9783642104732
Release Date: 2011-08-24
Genre: Mathematics

In teaching linear statistical models to first-year graduate students or to final-year undergraduate students there is no way to proceed smoothly without matrices and related concepts of linear algebra; their use is really essential. Our experience is that making some particular matrix tricks very familiar to students can substantially increase their insight into linear statistical models (and also multivariate statistical analysis). In matrix algebra, there are handy, sometimes even very simple “tricks” which simplify and clarify the treatment of a problem—both for the student and for the professor. Of course, the concept of a trick is not uniquely defined—by a trick we simply mean here a useful important handy result. In this book we collect together our Top Twenty favourite matrix tricks for linear statistical models.

Longitudinal Data Analysis

Author: Donald Hedeker
Publisher: John Wiley & Sons
ISBN: 9780470036471
Release Date: 2006-05-12
Genre: Mathematics

Longitudinal data analysis for biomedical and behavioral sciences This innovative book sets forth and describes methods for the analysis of longitudinaldata, emphasizing applications to problems in the biomedical and behavioral sciences. Reflecting the growing importance and use of longitudinal data across many areas of research, the text is designed to help users of statistics better analyze and understand this type of data. Much of the material from the book grew out of a course taught by Dr. Hedeker on longitudinal data analysis. The material is, therefore, thoroughly classroom tested and includes a number of features designed to help readers better understand and apply the material. Statistical procedures featured within the text include: * Repeated measures analysis of variance * Multivariate analysis of variance for repeated measures * Random-effects regression models (RRM) * Covariance-pattern models * Generalized-estimating equations (GEE) models * Generalizations of RRM and GEE for categorical outcomes Practical in their approach, the authors emphasize the applications of the methods, using real-world examples for illustration. Some syntax examples are provided, although the authors do not generally focus on software in this book. Several datasets and computer syntax examples are posted on this title's companion Web site. The authors intend to keep the syntax examples current as new versions of the software programs emerge. This text is designed for both undergraduate and graduate courses in longitudinal data analysis. Instructors can take advantage of overheads and additional course materials available online for adopters. Applied statisticians in biomedicine and the social sciences can also use the book as a convenient reference.

Regression Analysis by Example

Author: Samprit Chatterjee
Publisher: John Wiley & Sons
ISBN: 9780470055458
Release Date: 2006-10-20
Genre: Mathematics

The essentials of regression analysis through practical applications Regression analysis is a conceptually simple method for investigating relationships among variables. Carrying out a successful application of regression analysis, however, requires a balance of theoretical results, empirical rules, and subjective judgement. Regression Analysis by Example, Fourth Edition has been expanded and thoroughly updated to reflect recent advances in the field. The emphasis continues to be on exploratory data analysis rather than statistical theory. The book offers in-depth treatment of regression diagnostics, transformation, multicollinearity, logistic regression, and robust regression. This new edition features the following enhancements: Chapter 12, Logistic Regression, is expanded to reflect the increased use of the logit models in statistical analysis A new chapter entitled Further Topics discusses advanced areas of regression analysis Reorganized, expanded, and upgraded exercises appear at the end of each chapter A fully integrated Web page provides data sets Numerous graphical displays highlight the significance of visual appeal Regression Analysis by Example, Fourth Edition is suitable for anyone with an understanding of elementary statistics. Methods of regression analysis are clearly demonstrated, and examples containing the types of irregularities commonly encountered in the real world are provided. Each example isolates one or two techniques and features detailed discussions of the techniques themselves, the required assumptions, and the evaluated success of each technique. The methods described throughout the book can be carried out with most of the currently available statistical software packages, such as the software package R. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

Robust Statistics

Author: Frank R. Hampel
Publisher: John Wiley & Sons
ISBN: 9781118150689
Release Date: 2011-09-20
Genre: Mathematics

The Wiley-Interscience Paperback Series consists of selectedbooks that have been made more accessible to consumers in an effortto increase global appeal and general circulation. With these newunabridged softcover volumes, Wiley hopes to extend the lives ofthese works by making them available to future generations ofstatisticians, mathematicians, and scientists. "This is a nice book containing a wealth of information, much ofit due to the authors. . . . If an instructor designing such acourse wanted a textbook, this book would be the best choiceavailable. . . . There are many stimulating exercises, and the bookalso contains an excellent index and an extensive list ofreferences." —Technometrics "[This] book should be read carefully by anyone who isinterested in dealing with statistical models in a realisticfashion." —American Scientist Introducing concepts, theory, and applications, RobustStatistics is accessible to a broad audience, avoidingallusions to high-powered mathematics while emphasizing ideas,heuristics, and background. The text covers the approach based onthe influence function (the effect of an outlier on an estimater,for example) and related notions such as the breakdown point. Italso treats the change-of-variance function, fundamental conceptsand results in the framework of estimation of a single parameter,and applications to estimation of covariance matrices andregression parameters.

Linear Models

Author: Shayle R. Searle
Publisher: John Wiley & Sons
ISBN: 9781118491768
Release Date: 2012-09-04
Genre: Mathematics

This 1971 classic on linear models is once again available--as a Wiley Classics Library Edition. It features material that can be understood by any statistician who understands matrix algebra and basic statistical methods.

Time Series

Author: Ngai Hang Chan
Publisher: John Wiley & Sons
ISBN: 9780471461647
Release Date: 2004-04-05
Genre: Mathematics

Elements of Financial Time Series fills a gap in the market in thearea of financial time series analysis by giving both conceptualand practical illustrations. Examples and discussions in the laterchapters of the book make recent developments in time series moreaccessible. Examples from finance are maximized as much as possiblethroughout the book. * Full set of exercises is displayed at the end of eachchapter. * First seven chapters cover standard topics in time series at ahigh-intensity level. * Recent and timely developments in nonstandard time seriestechniques are illustrated with real finance examples indetail. * Examples are systemically illustrated with S-plus with codes anddata available on an associated Web site.

Random Graphs for Statistical Pattern Recognition

Author: David J. Marchette
Publisher: John Wiley & Sons
ISBN: 0471722081
Release Date: 2005-02-11
Genre: Mathematics

A timely convergence of two widely used disciplines Random Graphs for Statistical Pattern Recognition is the firstbook to address the topic of random graphs as it applies tostatistical pattern recognition. Both topics are of vital interestto researchers in various mathematical and statistical fields andhave never before been treated together in one book. The use ofdata random graphs in pattern recognition in clustering andclassification is discussed, and the applications for bothdisciplines are enhanced with new tools for the statistical patternrecognition community. New and interesting applications for randomgraph users are also introduced. This important addition to statistical literaturefeatures: Information that previously has been available only throughscattered journal articles Practical tools and techniques for a wide range of real-worldapplications New perspectives on the relationship between patternrecognition and computational geometry Numerous experimental problems to encourage practicalapplications With its comprehensive coverage of two timely fields, enhancedwith many references and real-world examples, Random Graphs forStatistical Pattern Recognition is a valuable resource forindustry professionals and students alike.

Weibull Models

Author: D. N. Prabhakar Murthy
Publisher: John Wiley & Sons
ISBN: 0471473278
Release Date: 2004-01-28
Genre: Mathematics

A comprehensive perspective on Weibull models The literature on Weibull models is vast, disjointed, andscattered across many different journals. Weibull Models is acomprehensive guide that integrates all the different facets ofWeibull models in a single volume. This book will be of great help to practitioners in reliabilityand other disciplines in the context of modeling data sets usingWeibull models. For researchers interested in these modelingtechniques, exercises at the end of each chapter define potentialtopics for future research. Organized into seven distinct parts, Weibull Models: Covers model analysis, parameter estimation, model validation,and application Serves as both a handbook and a research monograph. As ahandbook, it classifies the different models and presents theirproperties. As a research monograph, it unifies the literature andpresents the results in an integrated manner Intertwines theory and application Focuses on model identification prior to model parameterestimation Discusses the usefulness of the Weibull Probability plot (WPP)in the model selection to model a given data set Highlights the use of Weibull models in reliability theory Filled with in-depth analysis, Weibull Models pulls together themost relevant information on this topic to give everyone fromreliability engineers to applied statisticians involved withreliability and survival analysis a clear look at what Weibullmodels can offer.

Variance Components

Author: Shayle R. Searle
Publisher: John Wiley & Sons
ISBN: 9780470317693
Release Date: 2009-09-25
Genre: Mathematics

WILEY-INTERSCIENCE PAPERBACK SERIES The Wiley-Interscience Paperback Series consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. ". . .Variance Components is an excellent book. It is organized and well written, and provides many references to a variety of topics. I recommend it to anyone with interest in linear models." —Journal of the American Statistical Association "This book provides a broad coverage of methods for estimating variance components which appeal to students and research workers . . . The authors make an outstanding contribution to teaching and research in the field of variance component estimation." —Mathematical Reviews "The authors have done an excellent job in collecting materials on a broad range of topics. Readers will indeed gain from using this book . . . I must say that the authors have done a commendable job in their scholarly presentation." —Technometrics This book focuses on summarizing the variability of statistical data known as the analysis of variance table. Penned in a readable style, it provides an up-to-date treatment of research in the area. The book begins with the history of analysis of variance and continues with discussions of balanced data, analysis of variance for unbalanced data, predictions of random variables, hierarchical models and Bayesian estimation, binary and discrete data, and the dispersion mean model.