Mean Value Theorems and Functional Equations

Author: P K Sahoo
Publisher: World Scientific
ISBN: 9789814495875
Release Date: 1998-10-30
Genre: Mathematics

This book takes a comprehensive look at mean value theorems and their connection with functional equations. Besides the traditional Lagrange and Cauchy mean value theorems, it covers the Pompeiu and the Flett mean value theorems as well as extension to higher dimensions and the complex plane. Furthermore the reader is introduced to the field of functional equations through equations that arise in connection with the many mean value theorems discussed. Contents:Additive and Biadditive FunctionsLagrange's Mean Value Theorem and Related Functional EquationsPompeiu's Mean Value Theorem and Associated Functional EquationsTwo-Dimensional Mean Value Theorems and Functional EquationsSome Generalizations of Lagrange's Mean Value TheoremMean Value Theorems for Some Generalized DerivativesSome Integral Mean Value Theorems and Related Topics Readership: Pure mathematicians. Keywords:Functional Equations;Integral Mean Value Theorem;Cauchy Mean Value Theorem;Inequalities;Mean Values;Textbook;Pompeiu Mean Value Theorem;Flett Mean Value Theorem;Trahan Mean Value Theorem;Differential Mean Value Theorem;Lagrange Mean Value Theorem

Introduction to Functional Equations

Author: Prasanna K. Sahoo
Publisher: CRC Press
ISBN: 9781439841167
Release Date: 2011-02-08
Genre: Mathematics

Introduction to Functional Equations grew out of a set of class notes from an introductory graduate level course at the University of Louisville. This introductory text communicates an elementary exposition of valued functional equations where the unknown functions take on real or complex values. In order to make the presentation as manageable as possible for students from a variety of disciplines, the book chooses not to focus on functional equations where the unknown functions take on values on algebraic structures such as groups, rings, or fields. However, each chapter includes sections highlighting various developments of the main equations treated in that chapter. For advanced students, the book introduces functional equations in abstract domains like semigroups, groups, and Banach spaces. Functional equations covered include: Cauchy Functional Equations and Applications The Jensen Functional Equation Pexider's Functional Equation Quadratic Functional Equation D'Alembert Functional Equation Trigonometric Functional Equations Pompeiu Functional Equation Hosszu Functional Equation Davison Functional Equation Abel Functional Equation Mean Value Type Functional Equations Functional Equations for Distance Measures The innovation of solving functional equations lies in finding the right tricks for a particular equation. Accessible and rooted in current theory, methods, and research, this book sharpens mathematical competency and prepares students of mathematics and engineering for further work in advanced functional equations.

Functional Equations Inequalities and Applications

Author: Themistocles Rassias
Publisher: Springer Science & Business Media
ISBN: 9789401702256
Release Date: 2013-03-09
Genre: Mathematics

Functional Equations, Inequalities and Applications provides an extensive study of several important equations and inequalities, useful in a number of problems in mathematical analysis. Subjects dealt with include the generalized Cauchy functional equation, the Ulam stability theory in the geometry of partial differential equations, stability of a quadratic functional equation in Banach modules, functional equations and mean value theorems, isometric mappings, functional inequalities of iterative type, related to a Cauchy functional equation, the median principle for inequalities and applications, Hadamard and Dragomir-Agarwal inequalities, the Euler formulae and convex functions and approximate algebra homomorphisms. Also included are applications to some problems of pure and applied mathematics. This book will be of particular interest to mathematicians and graduate students whose work involves functional equations, inequalities and applications.

Stability of Functional Equations in Random Normed Spaces

Author: Yeol Je Cho
Publisher: Springer Science & Business Media
ISBN: 9781461484776
Release Date: 2013-08-27
Genre: Mathematics

This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research. The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.

On Functions and Functional Equations

Author: Smital
Publisher: CRC Press
ISBN: 0852744188
Release Date: 1988-01-01
Genre: Mathematics

On Functions and Functional Equations introduces the main topics in iteration theory and the theory of functional equations with emphasis on applications in the fields of mathematics, physics, biology, chemistry, and electronics and mechanical engineering. The book contains many classical results as well as important, more recent results. It also includes numerous exercise and some problems that have yet to be resolved. The book is accessible to readers having a secondary level mathematical education.

Symmetric Properties of Real Functions

Author: Brian thomson
Publisher: CRC Press
ISBN: 0824792300
Release Date: 1994-06-10
Genre: Mathematics

This work offers detailed coverage of every important aspect of symmetric structures in function of a single real variable, providing a historical perspective, proofs and useful methods for addressing problems. It provides assistance for real analysis problems involving symmetric derivatives, symmetric continuity and local symmetric structure of sets or functions.

More Calculus of a Single Variable

Author: Peter R. Mercer
Publisher: Springer
ISBN: 9781493919260
Release Date: 2014-10-17
Genre: Mathematics

This book goes beyond the basics of a first course in calculus to reveal the power and richness of the subject. Standard topics from calculus — such as the real numbers, differentiation and integration, mean value theorems, the exponential function — are reviewed and elucidated before digging into a deeper exploration of theory and applications, such as the AGM inequality, convexity, the art of integration, and explicit formulas for π. Further topics and examples are introduced through a plethora of exercises that both challenge and delight the reader. While the reader is thereby exposed to the many threads of calculus, the coherence of the subject is preserved throughout by an emphasis on patterns of development, of proof and argumentation, and of generalization. More Calculus of a Single Variable is suitable as a text for a course in advanced calculus, as a supplementary text for courses in analysis, and for self-study by students, instructors, and, indeed, all connoisseurs of ingenious calculations.

Functional Equations and Inequalities

Author: B. Forte
Publisher: Springer Science & Business Media
ISBN: 9783642110047
Release Date: 2011-06-02
Genre: Mathematics

J. Aczél: Some applications of functional equations and inequalities to information measures.- J.A. Baker: Functional equations in vector space, part II.- I Fenyo: Sur les équations distributionnelles.- B. Forte: Applications of functional equations and inequalities to information theory.- S. Golab: Sur l’équation fonctionnelle des brigade.- E. Hille: Mean-values and functional equations.- J. Kampé de Feriet: Applications of functional equations and inequalities to information theory. Measure of information by a set of observers: a functional equation.- M. Kuczma: Convex functions.- S. Kurepa: Functional equations on vector spaces.- E. Lukacs: Inequalities and functional equations in probability theory.- M.A. McKiernan: Difference and mean-value type functional equations.- T.S. Motzkin: Solutions of differential and functional inequalities.- C.T. Ng: Uniqueness theorems in the theory of functional equations and related homotopy.- A.M. Ostrowski: Integral inequalities.- H. Schwerdtfeger: Remark on an inequality for monotonic functions.

Lectures on Functional Equations and Their Applications

Author: J. Aczél
Publisher: Academic Press
ISBN: 9780080955254
Release Date: 1966-01-01
Genre: Computers

Numerous detailed proofs highlight this treatment of functional equations. Starting with equations that can be solved by simple substitutions, the book then moves to equations with several unknown functions and methods of reduction to differential and integral equations. Also includes composite equations, equations with several unknown functions of several variables, vector and matrix equations, more. 1966 edition.

Problems in Mathematical Analysis Continuity and differentiation

Author: Wiesława J. Kaczor
Publisher: American Mathematical Soc.
ISBN: 9780821820513
Release Date: 2001-01
Genre: Mathematics

We learn by doing. We learn mathematics by doing problems. And we learn more mathematics by doing more problems. This is the sequel to Problems in Mathematical Analysis I (Volume 4 in the Student Mathematical Library series). If you want to hone your understanding of continuous and differentiable functions, this book contains hundreds of problems to help you do so. The emphasis here is on real functions of a single variable. The book is mainly geared toward students studying the basic principles of analysis. However, given its selection of problems, organization, and level, it would be an ideal choice for tutorial or problem-solving seminars, particularly those geared toward the Putnam exam. It is also suitable for self-study. The presentation of the material is designed to help student comprehension, to encourage them to ask their own questions, and to start research. The collection of problems will also help teachers who wish to incorporate problems into their lectures. The problems are grouped into sections according to the methods of solution. Solutions for the problems are provided.

The Goldbach Conjecture

Author: Yuan Wang
Publisher: World Scientific
ISBN: 9812776605
Release Date: 2002
Genre: Mathematics

This book provides a detailed description of a most important unsolved mathematical problem OCo the Goldbach conjecture. Raised in 1742 in a letter from Goldbach to Euler, this conjecture attracted the attention of many mathematical geniuses. Several great achievements were made, but only until the 1920''s. The book gives an exposition of these results and their impact on mathematics, particularly, number theory. It also presents (partly or wholly) selections from important literature, so that readers can get a full picture of the conjecture."

Means and Their Inequalities

Author: P.S. Bullen
Publisher: Springer Science & Business Media
ISBN: 9789401722261
Release Date: 2013-06-29
Genre: Mathematics

Approach your problems from the right end It isn't !hat they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal 0/ Fa/her 'The Hermit Oad in Crane Feathers' in R. Brown 'The point of a Pin'. van GuJik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fie1ds does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "complete1y integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing c1assification schemes. They draw upon wide1y different sections of mathematics.

MVT A Most Valuable Theorem

Author: Craig Smorynski
Publisher: Springer
ISBN: 9783319529561
Release Date: 2017-04-09
Genre: Mathematics

This book is about the rise and supposed fall of the mean value theorem. It discusses the evolution of the theorem and the concepts behind it, how the theorem relates to other fundamental results in calculus, and modern re-evaluations of its role in the standard calculus course. The mean value theorem is one of the central results of calculus. It was called “the fundamental theorem of the differential calculus” because of its power to provide simple and rigorous proofs of basic results encountered in a first-year course in calculus. In mathematical terms, the book is a thorough treatment of this theorem and some related results in the field; in historical terms, it is not a history of calculus or mathematics, but a case study in both. MVT: A Most Valuable Theorem is aimed at those who teach calculus, especially those setting out to do so for the first time. It is also accessible to anyone who has finished the first semester of the standard course in the subject and will be of interest to undergraduate mathematics majors as well as graduate students. Unlike other books, the present monograph treats the mathematical and historical aspects in equal measure, providing detailed and rigorous proofs of the mathematical results and even including original source material presenting the flavour of the history.