Mixed Effects Models and Extensions in Ecology with R

Author: Alain Zuur
Publisher: Springer Science & Business Media
ISBN: 0387874585
Release Date: 2009-03-05
Genre: Science

This book discusses advanced statistical methods that can be used to analyse ecological data. Most environmental collected data are measured repeatedly over time, or space and this requires the use of GLMM or GAMM methods. The book starts by revising regression, additive modelling, GAM and GLM, and then discusses dealing with spatial or temporal dependencies and nested data.

Mixed Effects Models and Extensions in Ecology with R

Author: Alain Zuur
Publisher: Springer
ISBN: 1441927646
Release Date: 2011-04-06
Genre: Science

This book discusses advanced statistical methods that can be used to analyse ecological data. Most environmental collected data are measured repeatedly over time, or space and this requires the use of GLMM or GAMM methods. The book starts by revising regression, additive modelling, GAM and GLM, and then discusses dealing with spatial or temporal dependencies and nested data.

Analyzing Ecological Data

Author: Alain Zuur
Publisher: Springer Science & Business Media
ISBN: 9780387459721
Release Date: 2007-08-29
Genre: Science

This book provides a practical introduction to analyzing ecological data using real data sets. The first part gives a largely non-mathematical introduction to data exploration, univariate methods (including GAM and mixed modeling techniques), multivariate analysis, time series analysis, and spatial statistics. The second part provides 17 case studies. The case studies include topics ranging from terrestrial ecology to marine biology and can be used as a template for a reader’s own data analysis. Data from all case studies are available from www.highstat.com. Guidance on software is provided in the book.

Ecological Models and Data in R

Author: Benjamin M. Bolker
Publisher: Princeton University Press
ISBN: 9780691125220
Release Date: 2008-07-21
Genre: Computers

Introduction and background; Exploratory data analysis and graphics; Deterministic functions for ecological modeling; Probability and stochastic distributions for ecological modeling; Stochatsic simulation and power analysis; Likelihood and all that; Optimization and all that; Likelihood examples; Standar statistics revisited; Modeling variance; Dynamic models.

A Biologist s Guide to Mathematical Modeling in Ecology and Evolution

Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 9781400840915
Release Date: 2011-09-19
Genre: Science

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

Linear and Generalized Linear Mixed Models and Their Applications

Author: Jiming Jiang
Publisher: Springer Science & Business Media
ISBN: 9780387479460
Release Date: 2007-05-30
Genre: Mathematics

This book covers two major classes of mixed effects models, linear mixed models and generalized linear mixed models. It presents an up-to-date account of theory and methods in analysis of these models as well as their applications in various fields. The book offers a systematic approach to inference about non-Gaussian linear mixed models. Furthermore, it includes recently developed methods, such as mixed model diagnostics, mixed model selection, and jackknife method in the context of mixed models. The book is aimed at students, researchers and other practitioners who are interested in using mixed models for statistical data analysis.

Linear Mixed Effects Models Using R

Author: Andrzej Gałecki
Publisher: Springer Science & Business Media
ISBN: 9781461439004
Release Date: 2013-02-05
Genre: Mathematics

Linear mixed-effects models (LMMs) are an important class of statistical models that can be used to analyze correlated data. Such data are encountered in a variety of fields including biostatistics, public health, psychometrics, educational measurement, and sociology. This book aims to support a wide range of uses for the models by applied researchers in those and other fields by providing state-of-the-art descriptions of the implementation of LMMs in R. To help readers to get familiar with the features of the models and the details of carrying them out in R, the book includes a review of the most important theoretical concepts of the models. The presentation connects theory, software and applications. It is built up incrementally, starting with a summary of the concepts underlying simpler classes of linear models like the classical regression model, and carrying them forward to LMMs. A similar step-by-step approach is used to describe the R tools for LMMs. All the classes of linear models presented in the book are illustrated using real-life data. The book also introduces several novel R tools for LMMs, including new class of variance-covariance structure for random-effects, methods for influence diagnostics and for power calculations. They are included into an R package that should assist the readers in applying these and other methods presented in this text.

Multivariate Statistics for Wildlife and Ecology Research

Author: Kevin McGarigal
Publisher: Springer Science & Business Media
ISBN: 9781461212881
Release Date: 2013-12-01
Genre: Science

With its focus on the practical application of the techniques of multivariate statistics, this book shapes the powerful tools of statistics for the specific needs of ecologists and makes statistics more applicable to their course of study. It gives readers a solid conceptual understanding of the role of multivariate statistics in ecological applications and the relationships among various techniques, while avoiding detailed mathematics and the underlying theory. More importantly, the reader will gain insight into the type of research questions best handled by each technique and the important considerations in applying them. Whether used as a textbook for specialised courses or as a supplement to general statistics texts, the book emphasises those techniques that students of ecology and natural resources most need to understand and employ in their research. While targeted for upper-division and graduate students in wildlife biology, forestry, and ecology, and for professional wildlife scientists and natural resource managers, this book will also be valuable to researchers in any of the biological sciences.

Numerical Ecology

Author: Pierre Legendre
Publisher: Elsevier
ISBN: 9780444538680
Release Date: 2012
Genre: SCIENCE

The book describes and discusses the numerical methods which are successfully being used for analysing ecological data, using a clear and comprehensive approach. These methods are derived from the fields of mathematical physics, parametric and nonparametric statistics, information theory, numerical taxonomy, archaeology, psychometry, sociometry, econometry and others. Compared to the first edition of Numerical Ecology, this second edition includes three new chapters, dealing with the analysis of semiquantitative data, canonical analysis and spatial analysis. New sections have been added to almost all other chapters. There are sections listing available computer programs and packages at the end of several chapters. As in the previous English and French editions, there are numerous examples from the ecological literature, and the choice of methods is facilitated by several synoptic tables.

Mixed Models

Author: Eugene Demidenko
Publisher: John Wiley & Sons
ISBN: 9781118091579
Release Date: 2013-08-05
Genre: Mathematics

Mixed modeling is one of the most promising and exciting areas of statistical analysis, enabling the analysis of nontraditional, clustered data that may come in the form of shapes or images. This book provides in-depth mathematical coverage of mixed models' statistical properties and numerical algorithms, as well as applications such as the analysis of tumor regrowth, shape, and image. The new edition includes significant updating, over 300 exercises, stimulating chapter projects and model simulations, inclusion of R subroutines, and a revised text format. The target audience continues to be graduate students and researchers. An author-maintained web site is available with solutions to exercises and a compendium of relevant data sets.

Resource Selection by Animals

Author: B.B. Manly
Publisher: Springer Science & Business Media
ISBN: 0412401401
Release Date: 1993
Genre: Mathematics

This book gives a clear and consistent framework for the study of how animals select their resources (food and habitat) by taking the reader through different types of study design. It is an invaluable handbook for field biologists, especially those concerned with the management and conservation of wildlife.

Bayesian Methods for Ecology

Author: Michael A. McCarthy
Publisher: Cambridge University Press
ISBN: 9781139463874
Release Date: 2007-05-10
Genre: Science

The interest in using Bayesian methods in ecology is increasing, however many ecologists have difficulty with conducting the required analyses. McCarthy bridges that gap, using a clear and accessible style. The text also incorporates case studies to demonstrate mark-recapture analysis, development of population models and the use of subjective judgement. The advantages of Bayesian methods, are also described here, for example, the incorporation of any relevant prior information and the ability to assess the evidence in favour of competing hypotheses. Free software is available as well as an accompanying web-site containing the data files and WinBUGS codes. Bayesian Methods for Ecology will appeal to academic researchers, upper undergraduate and graduate students of Ecology.

Structural Equation Modeling and Natural Systems

Author: James B. Grace
Publisher: Cambridge University Press
ISBN: 9781139457842
Release Date: 2006-08-17
Genre: Nature

This book, first published in 2006, presents an introduction to the methodology of structural equation modeling, illustrates its use, and goes on to argue that it has revolutionary implications for the study of natural systems. A major theme of this book is that we have, up to this point, attempted to study systems primarily using methods (such as the univariate model) that were designed only for considering individual processes. Understanding systems requires the capacity to examine simultaneous influences and responses. Structural equation modeling (SEM) has such capabilities. It also possesses many other traits that add strength to its utility as a means of making scientific progress. In light of the capabilities of SEM, it can be argued that much of ecological theory is currently locked in an immature state that impairs its relevance. It is further argued that the principles of SEM are capable of leading to the development and evaluation of multivariate theories of the sort vitally needed for the conservation of natural systems.