Modern Data Science with R

Author: Benjamin S. Baumer
Publisher: CRC Press
ISBN: 9781498724494
Release Date: 2017-03-16
Genre: Law

Modern Data Science with R is a comprehensive data science textbook for undergraduates that incorporates statistical and computational thinking to solve real-world problems with data. Rather than focus exclusively on case studies or programming syntax, this book illustrates how statistical programming in the state-of-the-art R/RStudio computing environment can be leveraged to extract meaningful information from a variety of data in the service of addressing compelling statistical questions. Contemporary data science requires a tight integration of knowledge from statistics, computer science, mathematics, and a domain of application. This book will help readers with some background in statistics and modest prior experience with coding develop and practice the appropriate skills to tackle complex data science projects. The book features a number of exercises and has a flexible organization conducive to teaching a variety of semester courses.

Graphics for Statistics and Data Analysis with R

Author: Kevin J. Keen
Publisher: CRC Press
ISBN: 9780429632211
Release Date: 2018-09-26
Genre: Mathematics

Praise for the First Edition "The main strength of this book is that it provides a unified framework of graphical tools for data analysis, especially for univariate and low-dimensional multivariate data. In addition, it is clearly written in plain language and the inclusion of R code is particularly useful to assist readers’ understanding of the graphical techniques discussed in the book. ... It not only summarises graphical techniques, but it also serves as a practical reference for researchers and graduate students with an interest in data display." -Han Lin Shang,?Journal of Applied Statistics Graphics for Statistics and Data Analysis with R, Second Edition, presents the basic principles of graphical design and applies these principles to engaging examples using the graphics and lattice packages in R. It offers a wide array of modern graphical displays for data visualization and representation. Added in the second edition are coverage of the ggplot2 graphics package, material on human visualization and color rendering in R, on screen, and in print. Features Emphasizes the fundamentals of statistical graphics and best practice guidelines for producing and choosing among graphical displays in R Presents technical details on topics such as: the estimation of quantiles, nonparametric and parametric density estimation; diagnostic plots for the simple linear regression model; polynomial regression, splines, and locally weighted polynomial regression for producing a smooth curve; Trellis graphics for multivariate data Provides downloadable R code and data for figures at www.graphicsforstatistics.com Kevin J. Keen is a Professor of Mathematics and Statistics at the University of Northern British Columbia (Prince George, Canada) and an Accredited Professional StatisticianTM by the Statistical Society of Canada and the American Statistical Association.

Analysis of Categorical Data with R

Author: Christopher R. Bilder
Publisher: CRC Press
ISBN: 9781498706766
Release Date: 2014-08-11
Genre: Mathematics

Learn How to Properly Analyze Categorical Data Analysis of Categorical Data with R presents a modern account of categorical data analysis using the popular R software. It covers recent techniques of model building and assessment for binary, multicategory, and count response variables and discusses fundamentals, such as odds ratio and probability estimation. The authors give detailed advice and guidelines on which procedures to use and why to use them. The Use of R as Both a Data Analysis Method and a Learning Tool Requiring no prior experience with R, the text offers an introduction to the essential features and functions of R. It incorporates numerous examples from medicine, psychology, sports, ecology, and other areas, along with extensive R code and output. The authors use data simulation in R to help readers understand the underlying assumptions of a procedure and then to evaluate the procedure’s performance. They also present many graphical demonstrations of the features and properties of various analysis methods. Web Resource The data sets and R programs from each example are available at www.chrisbilder.com/categorical. The programs include code used to create every plot and piece of output. Many of these programs contain code to demonstrate additional features or to perform more detailed analyses than what is in the text. Designed to be used in tandem with the book, the website also uniquely provides videos of the authors teaching a course on the subject. These videos include live, in-class recordings, which instructors may find useful in a blended or flipped classroom setting. The videos are also suitable as a substitute for a short course.

Linear Models with R Second Edition

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 9781439887349
Release Date: 2016-04-19
Genre: Mathematics

A Hands-On Way to Learning Data Analysis Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition. New to the Second Edition Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates Extensive use of the ggplot2 graphics package in addition to base graphics Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.

Introduction to Data Technologies

Author: Paul Murrell
Publisher: CRC Press
ISBN: 1420065181
Release Date: 2009-02-23
Genre: Mathematics

Providing key information on how to work with research data, Introduction to Data Technologies presents ideas and techniques for performing critical, behind-the-scenes tasks that take up so much time and effort yet typically receive little attention in formal education. With a focus on computational tools, the book shows readers how to improve their awareness of what tasks can be achieved and describes the correct approach to perform these tasks. Practical examples demonstrate the most important points The author first discusses how to write computer code using HTML as a concrete example. He then covers a variety of data storage topics, including different file formats, XML, and the structure and design issues of relational databases. After illustrating how to extract data from a relational database using SQL, the book presents tools and techniques for searching, sorting, tabulating, and manipulating data. It also introduces some very basic programming concepts as well as the R language for statistical computing. Each of these topics has supporting chapters that offer reference material on HTML, CSS, XML, DTD, SQL, R, and regular expressions. One-stop shop of introductory computing information Written by a member of the R Development Core Team, this resource shows readers how to apply data technologies to tasks within a research setting. Collecting material otherwise scattered across many books and the web, it explores how to publish information via the web, how to access information stored in different formats, and how to write small programs to automate simple, repetitive tasks.

Extending the Linear Model with R

Author: Julian J. Faraway
Publisher: CRC Press
ISBN: 0203492285
Release Date: 2016-02-10
Genre: Mathematics

Linear models are central to the practice of statistics and form the foundation of a vast range of statistical methodologies. Julian J. Faraway's critically acclaimed Linear Models with R examined regression and analysis of variance, demonstrated the different methods available, and showed in which situations each one applies. Following in those footsteps, Extending the Linear Model with R surveys the techniques that grow from the regression model, presenting three extensions to that framework: generalized linear models (GLMs), mixed effect models, and nonparametric regression models. The author's treatment is thoroughly modern and covers topics that include GLM diagnostics, generalized linear mixed models, trees, and even the use of neural networks in statistics. To demonstrate the interplay of theory and practice, throughout the book the author weaves the use of the R software environment to analyze the data of real examples, providing all of the R commands necessary to reproduce the analyses. All of the data described in the book is available at http://people.bath.ac.uk/jjf23/ELM/ Statisticians need to be familiar with a broad range of ideas and techniques. This book provides a well-stocked toolbox of methodologies, and with its unique presentation of these very modern statistical techniques, holds the potential to break new ground in the way graduate-level courses in this area are taught.

The Essentials of Data Science Knowledge Discovery Using R

Author: Graham J. Williams
Publisher: CRC Press
ISBN: 9781351647496
Release Date: 2017-07-28
Genre: Business & Economics

The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years’ experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R’s capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book.

Statistical Regression and Classification

Author: Norman Matloff
Publisher: CRC Press
ISBN: 9781351645898
Release Date: 2017-09-19
Genre: Business & Economics

Statistical Regression and Classification: From Linear Models to Machine Learning takes an innovative look at the traditional statistical regression course, presenting a contemporary treatment in line with today's applications and users. The text takes a modern look at regression: * A thorough treatment of classical linear and generalized linear models, supplemented with introductory material on machine learning methods. * Since classification is the focus of many contemporary applications, the book covers this topic in detail, especially the multiclass case. * In view of the voluminous nature of many modern datasets, there is a chapter on Big Data. * Has special Mathematical and Computational Complements sections at ends of chapters, and exercises are partitioned into Data, Math and Complements problems. * Instructors can tailor coverage for specific audiences such as majors in Statistics, Computer Science, or Economics. * More than 75 examples using real data. The book treats classical regression methods in an innovative, contemporary manner. Though some statistical learning methods are introduced, the primary methodology used is linear and generalized linear parametric models, covering both the Description and Prediction goals of regression methods. The author is just as interested in Description applications of regression, such as measuring the gender wage gap in Silicon Valley, as in forecasting tomorrow's demand for bike rentals. An entire chapter is devoted to measuring such effects, including discussion of Simpson's Paradox, multiple inference, and causation issues. Similarly, there is an entire chapter of parametric model fit, making use of both residual analysis and assessment via nonparametric analysis. Norman Matloff is a professor of computer science at the University of California, Davis, and was a founder of the Statistics Department at that institution. His current research focus is on recommender systems, and applications of regression methods to small area estimation and bias reduction in observational studies. He is on the editorial boards of the Journal of Statistical Computation and the R Journal. An award-winning teacher, he is the author of The Art of R Programming and Parallel Computation in Data Science: With Examples in R, C++ and CUDA.

Statistical Learning and Data Science

Author: Mireille Gettler Summa
Publisher: CRC Press
ISBN: 9781439867648
Release Date: 2011-12-19
Genre: Business & Economics

Data analysis is changing fast. Driven by a vast range of application domains and affordable tools, machine learning has become mainstream. Unsupervised data analysis, including cluster analysis, factor analysis, and low dimensionality mapping methods continually being updated, have reached new heights of achievement in the incredibly rich data world that we inhabit. Statistical Learning and Data Science is a work of reference in the rapidly evolving context of converging methodologies. It gathers contributions from some of the foundational thinkers in the different fields of data analysis to the major theoretical results in the domain. On the methodological front, the volume includes conformal prediction and frameworks for assessing confidence in outputs, together with attendant risk. It illustrates a wide range of applications, including semantics, credit risk, energy production, genomics, and ecology. The book also addresses issues of origin and evolutions in the unsupervised data analysis arena, and presents some approaches for time series, symbolic data, and functional data. Over the history of multidimensional data analysis, more and more complex data have become available for processing. Supervised machine learning, semi-supervised analysis approaches, and unsupervised data analysis, provide great capability for addressing the digital data deluge. Exploring the foundations and recent breakthroughs in the field, Statistical Learning and Data Science demonstrates how data analysis can improve personal and collective health and the well-being of our social, business, and physical environments.

Applied Categorical and Count Data Analysis

Author: Wan Tang
Publisher: CRC Press
ISBN: 9781439897935
Release Date: 2012-06-04
Genre: Mathematics

Developed from the authors’ graduate-level biostatistics course, Applied Categorical and Count Data Analysis explains how to perform the statistical analysis of discrete data, including categorical and count outcomes. The authors describe the basic ideas underlying each concept, model, and approach to give readers a good grasp of the fundamentals of the methodology without using rigorous mathematical arguments. The text covers classic concepts and popular topics, such as contingency tables, logistic models, and Poisson regression models, along with modern areas that include models for zero-modified count outcomes, parametric and semiparametric longitudinal data analysis, reliability analysis, and methods for dealing with missing values. R, SAS, SPSS, and Stata programming codes are provided for all the examples, enabling readers to immediately experiment with the data in the examples and even adapt or extend the codes to fit data from their own studies. Designed for a one-semester course for graduate and senior undergraduate students in biostatistics, this self-contained text is also suitable as a self-learning guide for biomedical and psychosocial researchers. It will help readers analyze data with discrete variables in a wide range of biomedical and psychosocial research fields.

Introduction to Probability with R

Author: Kenneth Baclawski
Publisher: CRC Press
ISBN: 142006522X
Release Date: 2008-01-24
Genre: Mathematics

Based on a popular course taught by the late Gian-Carlo Rota of MIT, with many new topics covered as well, Introduction to Probability with R presents R programs and animations to provide an intuitive yet rigorous understanding of how to model natural phenomena from a probabilistic point of view. Although the R programs are small in length, they are just as sophisticated and powerful as longer programs in other languages. This brevity makes it easy for students to become proficient in R. This calculus-based introduction organizes the material around key themes. One of the most important themes centers on viewing probability as a way to look at the world, helping students think and reason probabilistically. The text also shows how to combine and link stochastic processes to form more complex processes that are better models of natural phenomena. In addition, it presents a unified treatment of transforms, such as Laplace, Fourier, and z; the foundations of fundamental stochastic processes using entropy and information; and an introduction to Markov chains from various viewpoints. Each chapter includes a short biographical note about a contributor to probability theory, exercises, and selected answers. The book has an accompanying website with more information.

Discrete Data Analysis with R

Author: Michael Friendly
Publisher: CRC Press
ISBN: 9781498725859
Release Date: 2015-12-16
Genre: Mathematics

An Applied Treatment of Modern Graphical Methods for Analyzing Categorical Data Discrete Data Analysis with R: Visualization and Modeling Techniques for Categorical and Count Data presents an applied treatment of modern methods for the analysis of categorical data, both discrete response data and frequency data. It explains how to use graphical methods for exploring data, spotting unusual features, visualizing fitted models, and presenting results. The book is designed for advanced undergraduate and graduate students in the social and health sciences, epidemiology, economics, business, statistics, and biostatistics as well as researchers, methodologists, and consultants who can use the methods with their own data and analyses. Along with describing the necessary statistical theory, the authors illustrate the practical application of the techniques to a large number of substantive problems, including how to organize data, conduct an analysis, produce informative graphs, and evaluate what the graphs reveal about the data. The first part of the book contains introductory material on graphical methods for discrete data, basic R skills, and methods for fitting and visualizing one-way discrete distributions. The second part focuses on simple, traditional nonparametric tests and exploratory methods for visualizing patterns of association in two-way and larger frequency tables. The final part of the text discusses model-based methods for the analysis of discrete data. Web Resource The data sets and R software used, including the authors’ own vcd and vcdExtra packages, are available at http://cran.r-project.org.

An Introduction to Statistical Inference and Its Applications with R

Author: Michael W. Trosset
Publisher: CRC Press
ISBN: 1584889489
Release Date: 2009-06-23
Genre: Mathematics

Emphasizing concepts rather than recipes, An Introduction to Statistical Inference and Its Applications with R provides a clear exposition of the methods of statistical inference for students who are comfortable with mathematical notation. Numerous examples, case studies, and exercises are included. R is used to simplify computation, create figures, and draw pseudorandom samples—not to perform entire analyses. After discussing the importance of chance in experimentation, the text develops basic tools of probability. The plug-in principle then provides a transition from populations to samples, motivating a variety of summary statistics and diagnostic techniques. The heart of the text is a careful exposition of point estimation, hypothesis testing, and confidence intervals. The author then explains procedures for 1- and 2-sample location problems, analysis of variance, goodness-of-fit, and correlation and regression. He concludes by discussing the role of simulation in modern statistical inference. Focusing on the assumptions that underlie popular statistical methods, this textbook explains how and why these methods are used to analyze experimental data.

Handbook of Big Data

Author: Peter Bühlmann
Publisher: CRC Press
ISBN: 9781482249088
Release Date: 2016-02-22
Genre: Business & Economics

Handbook of Big Data provides a state-of-the-art overview of the analysis of large-scale datasets. Featuring contributions from well-known experts in statistics and computer science, this handbook presents a carefully curated collection of techniques from both industry and academia. Thus, the text instills a working understanding of key statistical and computing ideas that can be readily applied in research and practice. Offering balanced coverage of methodology, theory, and applications, this handbook: Describes modern, scalable approaches for analyzing increasingly large datasets Defines the underlying concepts of the available analytical tools and techniques Details intercommunity advances in computational statistics and machine learning Handbook of Big Data also identifies areas in need of further development, encouraging greater communication and collaboration between researchers in big data sub-specialties such as genomics, computational biology, and finance.

Statistical Analysis of Reliability Data

Author: Martin J. Crowder
Publisher: Routledge
ISBN: 9781351414616
Release Date: 2017-11-13
Genre: Business & Economics

Written for those who have taken a first course in statistical methods, this book takes a modern, computer-oriented approach to describe the statistical techniques used for the assessment of reliability.