Based on lax-algebraic and categorical methods, Monoidal Topology provides a unified theory for metric and topological structures with far-reaching applications.

This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book. Key features: • More terms from General Topology than any other book ever published • Short and informative articles • Authors include the majority of top researchers in the field • Extensive indexing of terms

The featured review of the AMS describes the author’s earlier work in the field of approach spaces as, ‘A landmark in the history of general topology’. In this book, the author has expanded this study further and taken it in a new and exciting direction. The number of conceptually and technically different systems which characterize approach spaces is increased and moreover their uniform counterpart, uniform gauge spaces, is put into the picture. An extensive study of completions, both for approach spaces and for uniform gauge spaces, as well as compactifications for approach spaces is performed. A paradigm shift is created by the new concept of index analysis. Making use of the rich intrinsic quantitative information present in approach structures, a technique is developed whereby indices are defined that measure the extent to which properties hold, and theorems become inequalities involving indices; therefore vastly extending the realm of applicability of many classical results. The theory is then illustrated in such varied fields as topology, functional analysis, probability theory, hyperspace theory and domain theory. Finally a comprehensive analysis is made concerning the categorical aspects of the theory and its links with other topological categories. Index Analysis will be useful for mathematicians working in category theory, topology, probability and statistics, functional analysis, and theoretical computer science.

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Author: Chris Heunen
Publisher: Amsterdam University Press
ISBN: 9789085550242
Release Date: 2009-11-01
Genre: Electronic books

This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-

Author: S.P. Novikov
Publisher: Springer Science & Business Media
ISBN: 9783662105795
Release Date: 2013-06-29
Genre: Mathematics

This up-to-date survey of the whole field of topology is the flagship of the topology subseries of the Encyclopaedia. The book gives an overview of various subfields, beginning with the elements and proceeding right up to the present frontiers of research.

Author: Maria Cristina Pedicchio
Publisher: Cambridge University Press
ISBN: 0521834147
Release Date: 2004
Genre: Mathematics

The book offers categorical introductions to order, topology, algebra and sheaf theory, suitable for graduate students, teachers and researchers of pure mathematics.

Author: Paul Arne Østvær
Publisher: Springer Science & Business Media
ISBN: 303460565X
Release Date: 2010-09-08
Genre: Mathematics

Homotopy theory and C* algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications.

This monograph presents an application of concepts and methods from algebraic topology to models of concurrent processes in computer science and their analysis. Taking well-known discrete models for concurrent processes in resource management as a point of departure, the book goes on to refine combinatorial and topological models. In the process, it develops tools and invariants for the new discipline directed algebraic topology, which is driven by fundamental research interests as well as by applications, primarily in the static analysis of concurrent programs. The state space of a concurrent program is described as a higher-dimensional space, the topology of which encodes the essential properties of the system. In order to analyse all possible executions in the state space, more than “just” the topological properties have to be considered: Execution paths need to respect a partial order given by the time flow. As a result, tools and concepts from topology have to be extended to take privileged directions into account. The target audience for this book consists of graduate students, researchers and practitioners in the field, mathematicians and computer scientists alike.

Author: Richard A. Brualdi
Publisher: Birkhäuser
ISBN: 9783319709536
Release Date: 2018-03-31
Genre: Mathematics

This book contains the notes of the lectures delivered at an Advanced Course on Combinatorial Matrix Theory held at Centre de Recerca Matemàtica (CRM) in Barcelona. These notes correspond to five series of lectures. The first series is dedicated to the study of several matrix classes defined combinatorially, and was delivered by Richard A. Brualdi. The second one, given by Pauline van den Driessche, is concerned with the study of spectral properties of matrices with a given sign pattern. Dragan Stevanović delivered the third one, devoted to describing the spectral radius of a graph as a tool to provide bounds of parameters related with properties of a graph. The fourth lecture was delivered by Stephen Kirkland and is dedicated to the applications of the Group Inverse of the Laplacian matrix. The last one, given by Ángeles Carmona, focuses on boundary value problems on finite networks with special in-depth on the M-matrix inverse problem.

Author: Guillermo Cortiñas
Publisher: European Mathematical Society
ISBN: 3037190604
Release Date: 2008
Genre: K-theory

"Contains the proceedings of VASBI, the ICM 2006 satellite on K-theory and Noncommutative Geometry which took place in Valladolid, Spain, from August 31 to September 6, 2006."--Pref.

Author: Jaime Gómez Ramirez
Publisher: Springer Science & Business Media
ISBN: 9789400777385
Release Date: 2013-11-22
Genre: Medical

The purpose of the book is to advance in the understanding of brain function by defining a general framework for representation based on category theory. The idea is to bring this mathematical formalism into the domain of neural representation of physical spaces, setting the basis for a theory of mental representation, able to relate empirical findings, uniting them into a sound theoretical corpus. The innovative approach presented in the book provides a horizon of interdisciplinary collaboration that aims to set up a common agenda that synthesizes mathematical formalization and empirical procedures in a systemic way. Category theory has been successfully applied to qualitative analysis, mainly in theoretical computer science to deal with programming language semantics. Nevertheless, the potential of category theoretic tools for quantitative analysis of networks has not been tackled so far. Statistical methods to investigate graph structure typically rely on network parameters. Category theory can be seen as an abstraction of graph theory. Thus, new categorical properties can be added into network analysis and graph theoretic constructs can be accordingly extended in more fundamental basis. By generalizing networks using category theory we can address questions and elaborate answers in a more fundamental way without waiving graph theoretic tools. The vital issue is to establish a new framework for quantitative analysis of networks using the theory of categories, in which computational neuroscientists and network theorists may tackle in more efficient ways the dynamics of brain cognitive networks. The intended audience of the book is researchers who wish to explore the validity of mathematical principles in the understanding of cognitive systems. All the actors in cognitive science: philosophers, engineers, neurobiologists, cognitive psychologists, computer scientists etc. are akin to discover along its pages new unforeseen connections through the development of concepts and formal theories described in the book. Practitioners of both pure and applied mathematics e.g., network theorists, will be delighted with the mapping of abstract mathematical concepts in the terra incognita of cognition.

A Tannakian category is an abelian tensor category equipped with a fiber functor and additional structures which ensure that it is equivalent to the category of representations of some affine groupoid scheme acting on the spectrum of a field extension. If we are working over an arbitrary commutative ring rather than a field, the categories of representations cease to be abelian. We provide a list of sufficient conditions which ensure that an additive tensor category is equivalent to the category of representations of an affine groupoid scheme acting on an affine scheme, or, more generally, to the category of representations of a Hopf algebroid in a symmetric monoidal category. In order to do this we develop a "formal theory of Tannaka duality" inspired by Ross Street's "formal theory of monads." We apply our results to certain categories of filtered modules which are used to study p-adic Galois representations.