This concise text by a prominent mathematician deals chiefly with manifolds dominated by the geometry of paths. Topics include asymmetric and symmetric connections, the projective geometry of paths, and the geometry of sub-spaces. 1927 edition.

An introductory textbook on the differential geometry of curves and surfaces in 3-dimensional Euclidean space, presented in its simplest, most essential form. With problems and solutions. Includes 99 illustrations.

Author: Heinrich W. Guggenheimer
Publisher: Courier Corporation
ISBN: 9780486157207
Release Date: 2012-04-27
Genre: Mathematics

This text contains an elementary introduction to continuous groups and differential invariants; an extensive treatment of groups of motions in euclidean, affine, and riemannian geometry; more. Includes exercises and 62 figures.

Eight essays trace seminal ideas about the foundations of geometry that led to the development of Einstein's general theory of relativity. This is the only English-language collection of these important papers, some of which are extremely hard to find. Contributors include Helmholtz, Klein, Clifford, Poincaré, and Cartan.

Author: Marcel Berger
Publisher: Springer Science & Business Media
ISBN: 9783642182457
Release Date: 2012-12-06
Genre: Mathematics

This book introduces readers to the living topics of Riemannian Geometry and details the main results known to date. The results are stated without detailed proofs but the main ideas involved are described, affording the reader a sweeping panoramic view of almost the entirety of the field. From the reviews "The book has intrinsic value for a student as well as for an experienced geometer. Additionally, it is really a compendium in Riemannian Geometry." --MATHEMATICAL REVIEWS

Author: T. J. Willmore
Publisher: Courier Corporation
ISBN: 9780486282107
Release Date: 2013-05-13
Genre: Mathematics

This text employs vector methods to explore the classical theory of curves and surfaces. Topics include basic theory of tensor algebra, tensor calculus, calculus of differential forms, and elements of Riemannian geometry. 1959 edition.

Elementary, yet authoritative and scholarly, this book offers an excellent brief introduction to the classical theory of differential geometry. It is aimed at advanced undergraduate and graduate students who will find it not only highly readable but replete with illustrations carefully selected to help stimulate the student's visual understanding of geometry. The text features an abundance of problems, most of which are simple enough for class use, and often convey an interesting geometrical fact. A selection of more difficult problems has been included to challenge the ambitious student. Written by a noted mathematician and historian of mathematics, this volume presents the fundamental conceptions of the theory of curves and surfaces and applies them to a number of examples. Dr. Struik has enhanced the treatment with copious historical, biographical, and bibliographical references that place the theory in context and encourage the student to consult original sources and discover additional important ideas there. For this second edition, Professor Struik made some corrections and added an appendix with a sketch of the application of Cartan's method of Pfaffians to curve and surface theory. The result was to further increase the merit of this stimulating, thought-provoking text — ideal for classroom use, but also perfectly suited for self-study. In this attractive, inexpensive paperback edition, it belongs in the library of any mathematician or student of mathematics interested in differential geometry.

Expert treatment introduces semi-Riemannian geometry and its principal physical application, Einstein's theory of general relativity, using the Cartan exterior calculus as a principal tool. Prerequisites include linear algebra and advanced calculus. 2012 edition.

Author: Manfredo P. do Carmo
Publisher: Courier Dover Publications
ISBN: 9780486806990
Release Date: 2016-12-14
Genre: Mathematics

One of the most widely used texts in its field, this volume introduces the differential geometry of curves and surfaces in both local and global aspects. The presentation departs from the traditional approach with its more extensive use of elementary linear algebra and its emphasis on basic geometrical facts rather than machinery or random details. Many examples and exercises enhance the clear, well-written exposition, along with hints and answers to some of the problems. The treatment begins with a chapter on curves, followed by explorations of regular surfaces, the geometry of the Gauss map, the intrinsic geometry of surfaces, and global differential geometry. Suitable for advanced undergraduates and graduate students of mathematics, this text's prerequisites include an undergraduate course in linear algebra and some familiarity with the calculus of several variables. For this second edition, the author has corrected, revised, and updated the entire volume.

Author: K. L. Wardle
Publisher: Courier Corporation
ISBN: 9780486462721
Release Date: 2008
Genre: Mathematics

Elementary account covers curvature and torsion, involutes and evolutes, curves on a surface, curvature of surfaces, and developable and ruled surfaces. Numerous problems include complete solutions. 1965 edition.

A graduate-level text utilizing exterior differential forms in the analysis of a variety of mathematical problems in the physical and engineering sciences. Includes 45 illustrations. Index.

Author: William C. Graustein
Publisher: Courier Corporation
ISBN: 9780486153230
Release Date: 2012-04-19
Genre: Mathematics

This first course in differential geometry presents the fundamentals of the metric differential geometry of curves and surfaces in a Euclidean space of 3 dimensions, using vector notation and technique. Nearly 200 problems.1935 edition.

The method of moving frames originated in the early nineteenth century with the notion of the Frenet frame along a curve in Euclidean space. Later, Darboux expanded this idea to the study of surfaces. The method was brought to its full power in the early twentieth century by Elie Cartan, and its development continues today with the work of Fels, Olver, and others. This book is an introduction to the method of moving frames as developed by Cartan, at a level suitable for beginning graduate students familiar with the geometry of curves and surfaces in Euclidean space. The main focus is on the use of this method to compute local geometric invariants for curves and surfaces in various 3-dimensional homogeneous spaces, including Euclidean, Minkowski, equi-affine, and projective spaces. Later chapters include applications to several classical problems in differential geometry, as well as an introduction to the nonhomogeneous case via moving frames on Riemannian manifolds. The book is written in a reader-friendly style, building on already familiar concepts from curves and surfaces in Euclidean space. A special feature of this book is the inclusion of detailed guidance regarding the use of the computer algebra system Maple™ to perform many of the computations involved in the exercises.

Author: Walter A. Poor
Publisher: Dover Publications
ISBN: UOM:39076002711047
Release Date: 2007-06-05
Genre: Mathematics

Useful for independent study and as a reference work, this introduction to differential geometry features many examples and exercises. It defines geometric structure by specifying the parallel transport in an appropriate fiber bundle, focusing on the simplest cases of linear parallel transport in a vector bundle. The treatment opens with an introductory chapter on fiber bundles that proceeds to examinations of connection theory for vector bundles and Riemannian vector bundles. Additional topics include the role of harmonic theory, geometric vector fields on Riemannian manifolds, Lie groups, symmetric spaces, and symplectic and Hermitian vector bundles. A consideration of other differential geometric structures concludes the text, including surveys of characteristic classes of principal bundles, Cartan connections, and spin structures.