Nonlinear Systems

Author: S.S. Sastry
Publisher: Springer Science & Business Media
ISBN: 9781475731088
Release Date: 2013-04-18
Genre: Mathematics

There has been much excitement over the emergence of new mathematical techniques for the analysis and control of nonlinear systems. In addition, great technological advances have bolstered the impact of analytic advances and produced many new problems and applications which are nonlinear in an essential way. This book lays out in a concise mathematical framework the tools and methods of analysis which underlie this diversity of applications.

Nonlinear Systems Analysis

Author: M. Vidyasagar
Publisher: SIAM
ISBN: 0898719186
Release Date: 2002
Genre: Differential equations, Nonlinear

When M. Vidyasagar wrote the first edition of Nonlinear Systems Analysis, most control theorists considered the subject of nonlinear systems a mystery. Since then, advances in the application of differential geometric methods to nonlinear analysis have matured to a stage where every control theorist needs to possess knowledge of the basic techniques because virtually all physical systems are nonlinear in nature. The second edition, now republished in SIAM's Classics in Applied Mathematics series, provides a rigorous mathematical analysis of the behavior of nonlinear control systems under a variety of situations. It develops nonlinear generalizations of a large number of techniques and methods widely used in linear control theory. The book contains three extensive chapters devoted to the key topics of Lyapunov stability, input-output stability, and the treatment of differential geometric control theory. Audience: this text is designed for use at the graduate level in the area of nonlinear systems and as a resource for professional researchers and practitioners working in areas such as robotics, spacecraft control, motor control, and power systems.

Nonlinear Dynamical Systems and Control

Author: Wassim M. Haddad
Publisher: Princeton University Press
ISBN: 9781400841042
Release Date: 2011-09-19
Genre: Mathematics

Nonlinear Dynamical Systems and Control presents and develops an extensive treatment of stability analysis and control design of nonlinear dynamical systems, with an emphasis on Lyapunov-based methods. Dynamical system theory lies at the heart of mathematical sciences and engineering. The application of dynamical systems has crossed interdisciplinary boundaries from chemistry to biochemistry to chemical kinetics, from medicine to biology to population genetics, from economics to sociology to psychology, and from physics to mechanics to engineering. The increasingly complex nature of engineering systems requiring feedback control to obtain a desired system behavior also gives rise to dynamical systems. Wassim Haddad and VijaySekhar Chellaboina provide an exhaustive treatment of nonlinear systems theory and control using the highest standards of exposition and rigor. This graduate-level textbook goes well beyond standard treatments by developing Lyapunov stability theory, partial stability, boundedness, input-to-state stability, input-output stability, finite-time stability, semistability, stability of sets and periodic orbits, and stability theorems via vector Lyapunov functions. A complete and thorough treatment of dissipativity theory, absolute stability theory, stability of feedback systems, optimal control, disturbance rejection control, and robust control for nonlinear dynamical systems is also given. This book is an indispensable resource for applied mathematicians, dynamical systems theorists, control theorists, and engineers.

Nonlinear Optimal Control Theory

Author: Leonard David Berkovitz
Publisher: CRC Press
ISBN: 9781466560260
Release Date: 2012-08-25
Genre: Mathematics

Nonlinear Optimal Control Theory presents a deep, wide-ranging introduction to the mathematical theory of the optimal control of processes governed by ordinary differential equations and certain types of differential equations with memory. Many examples illustrate the mathematical issues that need to be addressed when using optimal control techniques in diverse areas. Drawing on classroom-tested material from Purdue University and North Carolina State University, the book gives a unified account of bounded state problems governed by ordinary, integrodifferential, and delay systems. It also discusses Hamilton-Jacobi theory. By providing a sufficient and rigorous treatment of finite dimensional control problems, the book equips readers with the foundation to deal with other types of control problems, such as those governed by stochastic differential equations, partial differential equations, and differential games.

Nonlinear Control Systems

Author: Alberto Isidori
Publisher: Springer Science & Business Media
ISBN: 3540199160
Release Date: 1995-08-11
Genre: Technology & Engineering

The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.

Practical Bifurcation and Stability Analysis

Author: Rüdiger U. Seydel
Publisher: Springer Science & Business Media
ISBN: 9781441917409
Release Date: 2009-11-27
Genre: Mathematics

Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.

Analysis and Control of Nonlinear Process Systems

Author: Katalin M. Hangos
Publisher: Springer Science & Business Media
ISBN: 9781852338619
Release Date: 2006-04-18
Genre: Mathematics

This straightforward text makes the complicated but powerful methods of non-linear control accessible to process engineers. Not only does it cover the necessary mathematics, but it consistently refers to the widely-known finite-dimensional linear time-invariant continuous case as a basis for extension to the nonlinear situation.

Symmetries and Semi invariants in the Analysis of Nonlinear Systems

Author: Laura Menini
Publisher: Springer Science & Business Media
ISBN: 0857296124
Release Date: 2011-05-06
Genre: Technology & Engineering

This book details the analysis of continuous- and discrete-time dynamical systems described by differential and difference equations respectively. Differential geometry provides the tools for this, such as first-integrals or orbital symmetries, together with normal forms of vector fields and of maps. A crucial point of the analysis is linearization by state immersion. The theory is developed for general nonlinear systems and specialized for the class of Hamiltonian systems. By using the strong geometric structure of Hamiltonian systems, the results proposed are stated in a different, less complex and more easily comprehensible manner. They are applied to physically motivated systems, to demonstrate how much insight into known properties is gained using these techniques. Various control systems applications of the techniques are characterized including: computation of the flow of nonlinear systems; computation of semi-invariants; computation of Lyapunov functions for stability analysis and observer design.

Mathematical Biology II

Author: James D. Murray
Publisher: Springer Science & Business Media
ISBN: 9780387952284
Release Date: 2011-02-15
Genre: Mathematics

This richly illustrated third edition provides a thorough training in practical mathematical biology and shows how exciting mathematical challenges can arise from a genuinely interdisciplinary involvement with the biosciences. It has been extensively updated and extended to cover much of the growth of mathematical biology. From the reviews: ""This book, a classical text in mathematical biology, cleverly combines mathematical tools with subject area sciences."--SHORT BOOK REVIEWS

Mathematical Physiology

Author: James Keener
Publisher: Springer Science & Business Media
ISBN: 0387793887
Release Date: 2009-01-06
Genre: Mathematics

Divided into two volumes, the book begins with a pedagogical presentation of some of the basic theory, with chapters on biochemical reactions, diffusion, excitability, wave propagation and cellular homeostasis. The second, more extensive part discusses particular physiological systems, with chapters on calcium dynamics, bursting oscillations and secretion, cardiac cells, muscles, intercellular communication, the circulatory system, the immune system, wound healing, the respiratory system, the visual system, hormone physiology, renal physiology, digestion, the visual system and hearing. New chapters on Calcium Dynamics, Neuroendocrine Cells and Regulation of Cell Function have been included.

L2 Gain and Passivity Techniques in Nonlinear Control

Author: Arjan van der Schaft
Publisher: Springer
ISBN: 9783319499925
Release Date: 2017-01-07
Genre: Computers

This standard text gives a unified treatment of passivity and L2-gain theory for nonlinear state space systems, preceded by a compact treatment of classical passivity and small-gain theorems for nonlinear input-output maps. The synthesis between passivity and L2-gain theory is provided by the theory of dissipative systems. Specifically, the small-gain and passivity theorems and their implications for nonlinear stability and stabilization are discussed from this standpoint. The connection between L2-gain and passivity via scattering is detailed. Feedback equivalence to a passive system and resulting stabilization strategies are discussed. The passivity concepts are enriched by a generalised Hamiltonian formalism, emphasising the close relations with physical modeling and control by interconnection, and leading to novel control methodologies going beyond passivity. The potential of L2-gain techniques in nonlinear control, including a theory of all-pass factorizations of nonlinear systems, and of parametrization of stabilizing controllers, is demonstrated. The nonlinear H-infinity optimal control problem is also treated and the book concludes with a geometric analysis of the solution sets of Hamilton-Jacobi inequalities and their relation with Riccati inequalities for the linearization. · L2-Gain and Passivity Techniques in Nonlinear Control (third edition) is thoroughly updated, revised, reorganized and expanded. Among the changes, readers will find: · updated and extended coverage of dissipative systems theory · substantial new material regarding converse passivity theorems and incremental/shifted passivity · coverage of recent developments on networks of passive systems with examples · a completely overhauled and succinct introduction to modeling and control of port-Hamiltonian systems, followed by an exposition of port-Hamiltonian formulation of physical network dynamics · updated treatment of all-pass factorization of nonlinear systems The book provides graduate students and researchers in systems and control with a compact presentation of a fundamental and rapidly developing area of nonlinear control theory, illustrated by a broad range of relevant examples stemming from different application areas.

Nonholonomic Mechanics and Control

Author: A.M. Bloch
Publisher: Springer
ISBN: 9781493930173
Release Date: 2015-11-05
Genre: Science

This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.

Switching in Systems and Control

Author: Daniel Liberzon
Publisher: Springer Science & Business Media
ISBN: 9781461200178
Release Date: 2012-12-06
Genre: Science

The theory of switched systems is related to the study of hybrid systems, which has gained attention from control theorists, computer scientists, and practicing engineers. This book examines switched systems from a control-theoretic perspective, focusing on stability analysis and control synthesis of systems that combine continuous dynamics with switching events. It includes a vast bibliography and a section of technical and historical notes.

Mathematical Foundations of Neuroscience

Author: G. Bard Ermentrout
Publisher: Springer Science & Business Media
ISBN: 9780387877082
Release Date: 2010-07-01
Genre: Mathematics

This book applies methods from nonlinear dynamics to problems in neuroscience. It uses modern mathematical approaches to understand patterns of neuronal activity seen in experiments and models of neuronal behavior. The intended audience is researchers interested in applying mathematics to important problems in neuroscience, and neuroscientists who would like to understand how to create models, as well as the mathematical and computational methods for analyzing them. The authors take a very broad approach and use many different methods to solve and understand complex models of neurons and circuits. They explain and combine numerical, analytical, dynamical systems and perturbation methods to produce a modern approach to the types of model equations that arise in neuroscience. There are extensive chapters on the role of noise, multiple time scales and spatial interactions in generating complex activity patterns found in experiments. The early chapters require little more than basic calculus and some elementary differential equations and can form the core of a computational neuroscience course. Later chapters can be used as a basis for a graduate class and as a source for current research in mathematical neuroscience. The book contains a large number of illustrations, chapter summaries and hundreds of exercises which are motivated by issues that arise in biology, and involve both computation and analysis. Bard Ermentrout is Professor of Computational Biology and Professor of Mathematics at the University of Pittsburgh. David Terman is Professor of Mathematics at the Ohio State University.

Recent Advances in Applied Nonlinear Dynamics with Numerical Analysis

Author: Changpin Li
Publisher: World Scientific
ISBN: 9789814436472
Release Date: 2013-01-11
Genre: Mathematics

Nonlinear dynamics is still a hot and challenging topic. In this edited book, we focus on fractional dynamics, infinite dimensional dynamics defined by the partial differential equation, network dynamics, fractal dynamics, and their numerical analysis and simulation. Fractional dynamics is a new topic in the research field of nonlinear dynamics which has attracted increasing interest due to its potential applications in the real world, such as modeling memory processes and materials. In this part, basic theory for fractional differential equations and numerical simulations for these equations will be introduced and discussed. In the infinite dimensional dynamics part, we emphasize on numerical calculation and theoretical analysis, including constructing various numerical methods and computing the corresponding limit sets, etc. In the last part, we show interest in network dynamics and fractal dynamics together with numerical simulations as well as their applications. Contents:Gronwall Inequalities (Fanhai Zeng, Jianxiong Cao and Changpin Li)Existence and Uniqueness of the Solutions to the Fractional Differential Equations (Yutian Ma, Fengrong Zhang and Changpin Li)Finite Element Methods for Fractional Differential Equations (Changpin Li and Fanhai Zeng)Fractional Step Method for the Nonlinear Conservation Laws with Fractional Dissipation (Can Li and Weihua Deng)Error Analysis of Spectral Method for the Space and Time Fractional Fokker–Planck Equation (Tinggang Zhao and Haiyan Xuan)A Discontinuous Finite Element Method for a Type of Fractional Cauchy Problem (Yunying Zheng)Asymptotic Analysis of a Singularly Perturbed Parabolic Problem in a General Smooth Domain (Yu-Jiang Wu, Na Zhang and Lun-Ji Song)Incremental Unknowns Methods for the ADI and ADSI Schemes (Ai-Li Yang, Yu-Jiang Wu and Zhong-Hua Yang)Stability of a Collocated FV Scheme for the 3D Navier–Stokes Equations (Xu Li and Shu-qin Wang)Computing the Multiple Positive Solutions to p–Henon Equation on the Unit Square (Zhaoxiang Li and Zhonghua Yang)Multilevel WBIUs Methods for Reaction–Diffusion Equations (Yang Wang, Yu-Jiang Wu and Ai-Li Yang)Models and Dynamics of Deterministically Growing Networks (Weigang Sun, Jingyuan Zhang and Guanrong Chen)On Different Approaches to Synchronization of Spatiotemporal Chaos in Complex Networks (Yuan Chai and Li-Qun Chen)Chaotic Dynamical Systems on Fractals and Their Applications to Image Encryption (Ruisong Ye, Yuru Zou and Jian Lu)Planar Crystallographic Symmetric Tiling Patterns Generated From Invariant Maps (Ruisong Ye, Haiying Zhao and Yuanlin Ma)Complex Dynamics in a Simple Two-Dimensional Discrete System (Huiqing Huang and Ruisong Ye)Approximate Periodic Solutions of Damped Harmonic Oscillators with Delayed Feedback (Qian Guo)The Numerical Methods in Option Pricing Problem (Xiong Bo)Synchronization and Its Control Between Two Coupled Networks (Yongqing Wu and Minghai Lü) Readership: Senior undergraduates, postgraduates and experts in nonlinear dynamics with numerical analysis. Keywords:Fractional Dynamics;Infinite Dimensional Dynamics;Network Dynamics;Fractal DynamicsKey Features:The topics in this edited book are very hot and highly impressiveIssues and methods of such topics in this edited book have not been made available yetThe present edited book is suitable for various levels of researchers, such as senior undergraduates, postgraduates, and experts