NoSQL and SQL Data Modeling

Author: Ted Hills
Publisher: Technics Publications
ISBN: 9781634621113
Release Date: 2016-04-01
Genre: Computers

How do we design for data when traditional design techniques cannot extend to new database technologies? In this era of big data and the Internet of Things, it is essential that we have the tools we need to understand the data coming to us faster than ever before, and to design databases and data processing systems that can adapt easily to ever-changing data schemas and ever-changing business requirements. There must be no intellectual disconnect between data and the software that manages it. It must be possible to extract meaning and knowledge from data to drive artificial intelligence applications. Novel NoSQL data organization techniques must be used side-by-side with traditional SQL databases. Are existing data modeling techniques ready for all of this? The Concept and Object Modeling Notation (COMN) is able to cover the full spectrum of analysis and design. A single COMN model can represent the objects and concepts in the problem space, logical data design, and concrete NoSQL and SQL document, key-value, columnar, and relational database implementations. COMN models enable an unprecedented level of traceability of requirements to implementation. COMN models can also represent the static structure of software and the predicates that represent the patterns of meaning in databases. This book will teach you: the simple and familiar graphical notation of COMN with its three basic shapes and four line styles how to think about objects, concepts, types, and classes in the real world, using the ordinary meanings of English words that aren’t tangled with confused techno-speak how to express logical data designs that are freer from implementation considerations than is possible in any other notation how to understand key-value, document, columnar, and table-oriented database designs in logical and physical terms how to use COMN to specify physical database implementations in any NoSQL or SQL database with the precision necessary for model-driven development

NoSQL and SQL Data Modeling

Author: Ted Hills
Publisher:
ISBN: 1634621093
Release Date: 2016-04-01
Genre:

The Concept and Object Modeling Notation (COMN) is able to cover the full spectrum of analysis and design. A single COMN model can represent the objects and concepts in the problem space, logical data design, and concrete NoSQL and SQL document, key-value, columnar, and relational database implementations. COMN models enable an unprecedented level of traceability of requirements to implementation. COMN models can also represent the static structure of software and the predicates that represent the patterns of meaning in databases.

Data Modeling for the Business

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 9781634620437
Release Date: 2009-04-01
Genre: Computers

Did you ever try getting Businesspeople and IT to agree on the project scope for a new application? Or try getting Marketing and Sales to agree on the target audience? Or try bringing new team members up to speed on the hundreds of tables in your data warehouse — without them dozing off? Whether you are a businessperson or an IT professional, you can be the hero in each of these and hundreds of other scenarios by building a High-Level Data Model. The High-Level Data Model is a simplified view of our complex environment. It can be a powerful communication tool of the key concepts within our application development projects, business intelligence and master data management programs, and all enterprise and industry initiatives. Learn about the High-Level Data Model and master the techniques for building one, including a comprehensive ten-step approach and hands-on exercises to help you practice topics on your own. In this book, we review data modeling basics and explain why the core concepts stored in a high-level data model can have significant business impact on an organization. We explain the technical notation used for a data model and walk through some simple examples of building a high-level data model. We also describe how data models relate to other key initiatives you may have heard of or may be implementing in your organization. This book contains best practices for implementing a high-level data model, along with some easy-to-use templates and guidelines for a step-by-step approach. Each step will be illustrated using many examples based on actual projects we have worked on. Names have been changed to protect the innocent, but the pain points and lessons have been preserved. One example spans an entire chapter and will allow you to practice building a high-level data model from beginning to end, and then compare your results to ours. Building a high-level data model following the ten step approach you’ll read about is a great way to ensure you will retain the new skills you learn in this book. As is the case in many disciplines, using the right tool for the right job is critical to the overall success of your high-level data model implementation. To help you in your tool selection process, there are several chapters dedicated to discussing what to look for in a high-level data modeling tool and a framework for choosing a data modeling tool, in general. This book concludes with a real-world case study that shows how an international energy company successfully used a high-level data model to streamline their information management practices and increase communication throughout the organization—between both businesspeople and IT. Data modeling is one of the under-exploited, and potentially very valuable, business capabilities that are often hidden away in an organization’s Information Technology department. Data Modeling for the Business highlights both the resulting damage to business value, and the opportunities to make things better. As an easy-to follow and comprehensive guide on the ‘why’ and ‘how’ of data modeling, it also reminds us that a successful strategy for exploiting IT depends at least as much on the information as the technology. Chris Potts, Corporate IT Strategist and Author of fruITion: Creating the Ultimate Corporate Strategy for Information Technology One of the most critical systems issues is aligning business with IT and fulfilling business needs using data models. The authors of Data Modeling for the Business do a masterful job at simply and clearly describing the art of using data models to communicate with business representatives and meet business needs. The book provides many valuable tools, analogies, and step-by-step methods for effective data modeling and is an important contribution in bridging the much needed connection between data modeling and realizing business requirements. Len Silverston, author of The Data Model Resource Book series

NoSQL for Mere Mortals

Author: Dan Sullivan
Publisher: Addison-Wesley Professional
ISBN: 9780134029887
Release Date: 2015-04-06
Genre: Computers

The Easy, Common-Sense Guide to Solving Real Problems with NoSQL The Mere Mortals ® tutorials have earned worldwide praise as the clearest, simplest way to master essential database technologies. Now, there’s one for today’s exciting new NoSQL databases. NoSQL for Mere Mortals guides you through solving real problems with NoSQL and achieving unprecedented scalability, cost efficiency, flexibility, and availability. Drawing on 20+ years of cutting-edge database experience, Dan Sullivan explains the advantages, use cases, and terminology associated with all four main categories of NoSQL databases: key-value, document, column family, and graph databases. For each, he introduces pragmatic best practices for building high-value applications. Through step-by-step examples, you’ll discover how to choose the right database for each task, and use it the right way. Coverage includes --Getting started: What NoSQL databases are, how they differ from relational databases, when to use them, and when not to Data management principles and design criteria: Essential knowledge for creating any database solution, NoSQL or relational --Key-value databases: Gaining more utility from data structures --Document databases: Schemaless databases, normalization and denormalization, mutable documents, indexing, and design patterns --Column family databases: Google’s BigTable design, table design, indexing, partitioning, and Big Data Graph databases: Graph/network modeling, design tips, query methods, and traps to avoid Whether you’re a database developer, data modeler, database user, or student, learning NoSQL can open up immense new opportunities. As thousands of database professionals already know, For Mere Mortals is the fastest, easiest route to mastery.

Data Modeling for MongoDB

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 9781634620413
Release Date: 2014-06-01
Genre: Computers

Congratulations! You completed the MongoDB application within the given tight timeframe and there is a party to celebrate your application’s release into production. Although people are congratulating you at the celebration, you are feeling some uneasiness inside. To complete the project on time required making a lot of assumptions about the data, such as what terms meant and how calculations are derived. In addition, the poor documentation about the application will be of limited use to the support team, and not investigating all of the inherent rules in the data may eventually lead to poorly-performing structures in the not-so-distant future. Now, what if you had a time machine and could go back and read this book. You would learn that even NoSQL databases like MongoDB require some level of data modeling. Data modeling is the process of learning about the data, and regardless of technology, this process must be performed for a successful application. You would learn the value of conceptual, logical, and physical data modeling and how each stage increases our knowledge of the data and reduces assumptions and poor design decisions. Read this book to learn how to do data modeling for MongoDB applications, and accomplish these five objectives: Understand how data modeling contributes to the process of learning about the data, and is, therefore, a required technique, even when the resulting database is not relational. That is, NoSQL does not mean NoDataModeling! Know how NoSQL databases differ from traditional relational databases, and where MongoDB fits. Explore each MongoDB object and comprehend how each compares to their data modeling and traditional relational database counterparts, and learn the basics of adding, querying, updating, and deleting data in MongoDB. Practice a streamlined, template-driven approach to performing conceptual, logical, and physical data modeling. Recognize that data modeling does not always have to lead to traditional data models! Distinguish top-down from bottom-up development approaches and complete a top-down case study which ties all of the modeling techniques together. This book is written for anyone who is working with, or will be working with MongoDB, including business analysts, data modelers, database administrators, developers, project managers, and data scientists. There are three sections: In Section I, Getting Started, we will reveal the power of data modeling and the tight connections to data models that exist when designing any type of database (Chapter 1), compare NoSQL with traditional relational databases and where MongoDB fits (Chapter 2), explore each MongoDB object and comprehend how each compares to their data modeling and traditional relational database counterparts (Chapter 3), and explain the basics of adding, querying, updating, and deleting data in MongoDB (Chapter 4). In Section II, Levels of Granularity, we cover Conceptual Data Modeling (Chapter 5), Logical Data Modeling (Chapter 6), and Physical Data Modeling (Chapter 7). Notice the “ing” at the end of each of these chapters. We focus on the process of building each of these models, which is where we gain essential business knowledge. In Section III, Case Study, we will explain both top down and bottom up development approaches and go through a top down case study where we start with business requirements and end with the MongoDB database. This case study will tie together all of the techniques in the previous seven chapters. Nike Senior Data Architect Ryan Smith wrote the foreword. Key points are included at the end of each chapter as a way to reinforce concepts. In addition, this book is loaded with hands-on exercises, along with their answers provided in Appendix A. Appendix B contains all of the book’s references and Appendix C contains a glossary of the terms used throughout the text.

Next Generation Databases

Author: Guy Harrison
Publisher: Apress
ISBN: 9781484213292
Release Date: 2015-12-30
Genre: Computers

"It’s not easy to find such a generous book on big data and databases. Fortunately, this book is the one." Feng Yu. Computing Reviews. June 28, 2016. This is a book for enterprise architects, database administrators, and developers who need to understand the latest developments in database technologies. It is the book to help you choose the correct database technology at a time when concepts such as Big Data, NoSQL and NewSQL are making what used to be an easy choice into a complex decision with significant implications. The relational database (RDBMS) model completely dominated database technology for over 20 years. Today this "one size fits all" stability has been disrupted by a relatively recent explosion of new database technologies. These paradigm-busting technologies are powering the "Big Data" and "NoSQL" revolutions, as well as forcing fundamental changes in databases across the board. Deciding to use a relational database was once truly a no-brainer, and the various commercial relational databases competed on price, performance, reliability, and ease of use rather than on fundamental architectures. Today we are faced with choices between radically different database technologies. Choosing the right database today is a complex undertaking, with serious economic and technological consequences. Next Generation Databases demystifies today’s new database technologies. The book describes what each technology was designed to solve. It shows how each technology can be used to solve real word application and business problems. Most importantly, this book highlights the architectural differences between technologies that are the critical factors to consider when choosing a database platform for new and upcoming projects. Introduces the new technologies that have revolutionized the database landscape Describes how each technology can be used to solve specific application or business challenges Reviews the most popular new wave databases and how they use these new database technologies

Graph Data Modeling for NoSQL and SQL

Author: Thomas Frisendal
Publisher: Technics Publications
ISBN: 9781634621236
Release Date: 2016-09-09
Genre: Computers

Master a graph data modeling technique superior to traditional data modeling for both relational and NoSQL databases (graph, document, key-value, and column), leveraging cognitive psychology to improve big data designs. From Karen Lopez’s Foreword: In this book, Thomas Frisendal raises important questions about the continued usefulness of traditional data modeling notations and approaches: Are Entity Relationship Diagrams (ERDs) relevant to analytical data requirements? Are ERDs relevant in the new world of Big Data? Are ERDs still the best way to work with business users to understand their needs? Are Logical and Physical Data Models too closely coupled? Are we correct in using the same notations for communicating with business users and developers? Should we refine our existing notations and tools to meet these new needs, or should we start again from a blank page? What new notations and approaches will we need? How will we use those to build enterprise database systems? Frisendal takes us through the history of data modeling, enterprise data models and traditional modeling methods. He points out, quite contentiously, where he feels we have gone wrong and in a few places where we got it right. He then maps out the psychology of meaning and context, while identifying important issues about where data modeling may or may not fit in business modeling. The main subject of this work is a proposal for a new exploration-driven modeling approach and new modeling notations for business concept models, business solutions models, and physical data models with examples on how to leverage those for implementing into any target database or datastore. These new notations are based on a property graph approach to modeling data.

Data Model Scorecard

Author: Steve Hoberman
Publisher: Technics Publications
ISBN: 9781634620840
Release Date: 2015-11-01
Genre: Computers

Data models are the main medium used to communicate data requirements from business to IT, and within IT from analysts, modelers, and architects, to database designers and developers. Therefore it’s essential to get the data model right. But how do you determine right? That’s where the Data Model Scorecard® comes in. The Data Model Scorecard is a data model quality scoring tool containing ten categories aimed at improving the quality of your organization’s data models. Many of my consulting assignments are dedicated to applying the Data Model Scorecard to my client’s data models – I will show you how to apply the Scorecard in this book. This book, written for people who build, use, or review data models, contains the Data Model Scorecard template and an explanation along with many examples of each of the ten Scorecard categories. There are three sections: In Section I, Data Modeling and the Need for Validation, receive a short data modeling primer in Chapter 1, understand why it is important to get the data model right in Chapter 2, and learn about the Data Model Scorecard in Chapter 3. In Section II, Data Model Scorecard Categories, we will explain each of the ten categories of the Data Model Scorecard. There are ten chapters in this section, each chapter dedicated to a specific Scorecard category: · Chapter 4: Correctness · Chapter 5: Completeness · Chapter 6: Scheme · Chapter 7: Structure · Chapter 8: Abstraction · Chapter 9: Standards · Chapter 10: Readability · Chapter 11: Definitions · Chapter 12: Consistency · Chapter 13: Data In Section III, Validating Data Models, we will prepare for the model review (Chapter 14), cover tips to help during the model review (Chapter 15), and then review a data model based upon an actual project (Chapter 16).

Joe Celko s Complete Guide to NoSQL

Author: Joe Celko
Publisher: Newnes
ISBN: 9780124072206
Release Date: 2013-10-07
Genre: Computers

Joe Celko's Complete Guide to NoSQL provides a complete overview of non-relational technologies so that you can become more nimble to meet the needs of your organization. As data continues to explode and grow more complex, SQL is becoming less useful for querying data and extracting meaning. In this new world of bigger and faster data, you will need to leverage non-relational technologies to get the most out of the information you have. Learn where, when, and why the benefits of NoSQL outweigh those of SQL with Joe Celko's Complete Guide to NoSQL. This book covers three areas that make today's new data different from the data of the past: velocity, volume and variety. When information is changing faster than you can collect and query it, it simply cannot be treated the same as static data. Celko will help you understand velocity, to equip you with the tools to drink from a fire hose. Old storage and access models do not work for big data. Celko will help you understand volume, as well as different ways to store and access data such as petabytes and exabytes. Not all data can fit into a relational model, including genetic data, semantic data, and data generated by social networks. Celko will help you understand variety, as well as the alternative storage, query, and management frameworks needed by certain kinds of data. Gain a complete understanding of the situations in which SQL has more drawbacks than benefits so that you can better determine when to utilize NoSQL technologies for maximum benefit Recognize the pros and cons of columnar, streaming, and graph databases Make the transition to NoSQL with the expert guidance of best-selling SQL expert Joe Celko

MongoDB Data Modeling

Author: Wilson da Rocha França
Publisher: Packt Publishing Ltd
ISBN: 9781783550586
Release Date: 2015-06-22
Genre: Computers

This book covers the basic concepts in data modeling and also provides you with the tools to design better schemas. With a focus on data usage, this book will cover how queries and indexes can influence the way we design schemas, with thorough examples and detailed code. The book begins with a brief discussion of data models, drawing a parallel between relational databases, NoSQL, and consequently MongoDB. Next, the book explains the most basic MongoDB concepts, such as read and write operations, indexing, and how to design schemas by knowing how applications will use the data. Finally, we will talk about best practices that will help you optimize and manage your database, presenting you with a real-life example of data modeling on a real-time logging analytics application.

NoSQL Distilled

Author: Pramod J. Sadalage
Publisher: Pearson Education
ISBN: 9780321826626
Release Date: 2013
Genre: Computers

The need to handle increasingly larger data volumes is one factor driving the adoption of a new class of nonrelational “NoSQL” databases. Advocates of NoSQL databases claim they can be used to build systems that are more performant, scale better, and are easier to program. NoSQL Distilled is a concise but thorough introduction to this rapidly emerging technology. Pramod J. Sadalage and Martin Fowler explain how NoSQL databases work and the ways that they may be a superior alternative to a traditional RDBMS. The authors provide a fast-paced guide to the concepts you need to know in order to evaluate whether NoSQL databases are right for your needs and, if so, which technologies you should explore further. The first part of the book concentrates on core concepts, including schemaless data models, aggregates, new distribution models, the CAP theorem, and map-reduce. In the second part, the authors explore architectural and design issues associated with implementing NoSQL. They also present realistic use cases that demonstrate NoSQL databases at work and feature representative examples using Riak, MongoDB, Cassandra, and Neo4j. In addition, by drawing on Pramod Sadalage's pioneering work, NoSQL Distilled shows how to implement evolutionary design with schema migration: an essential technique for applying NoSQL databases. The book concludes by describing how NoSQL is ushering in a new age of Polyglot Persistence, where multiple data-storage worlds coexist, and architects can choose the technology best optimized for each type of data access.

Usage Driven Database Design

Author: George Tillmann
Publisher: Apress
ISBN: 9781484227220
Release Date: 2017-04-07
Genre: Computers

Design great databases—from logical data modeling through physical schema definition. You will learn a framework that finally cracks the problem of merging data and process models into a meaningful and unified design that accounts for how data is actually used in production systems. Key to the framework is a method for taking the logical data model that is a static look at the definition of the data, and merging that static look with the process models describing how the data will be used in actual practice once a given system is implemented. The approach solves the disconnect between the static definition of data in the logical data model and the dynamic flow of the data in the logical process models. The design framework in this book can be used to create operational databases for transaction processing systems, or for data warehouses in support of decision support systems. The information manager can be a flat file, Oracle Database, IMS, NoSQL, Cassandra, Hadoop, or any other DBMS. Usage-Driven Database Design emphasizes practical aspects of design, and speaks to what works, what doesn’t work, and what to avoid at all costs. Included in the book are lessons learned by the author over his 30+ years in the corporate trenches. Everything in the book is grounded on good theory, yet demonstrates a professional and pragmatic approach to design that can come only from decades of experience. Presents an end-to-end framework from logical data modeling through physical schema definition. Includes lessons learned, techniques, and tricks that can turn a database disaster into a success. Applies to all types of database management systems, including NoSQL such as Cassandra and Hadoop, and mainstream SQL databases such as Oracle and SQL Server What You'll Learn Create logical data models that accurately reflect the real world of the user Create usage scenarios reflecting how applications will use a new database Merge static data models with dynamic process models to create resilient yet flexible database designs Support application requirements by creating responsive database schemas in any database architecture Cope with big data and unstructured data for transaction processing and decision support systems Recognize when relational approaches won’t work, and when to turn toward NoSQL solutions such as Cassandra or Hadoop Who This Book Is For System developers, including business analysts, database designers, database administrators, and application designers and developers who must design or interact with database systems

Encyclopedia of Database Technologies and Applications

Author: Rivero, Laura C.
Publisher: IGI Global
ISBN: 9781591407959
Release Date: 2005-06-30
Genre: Education

"Addresses the evolution of database management, technologies and applications along with the progress and endeavors of new research areas."--P. xiii.

Making Sense of NoSQL

Author: Dan McCreary
Publisher: Manning Publications
ISBN: 1617291072
Release Date: 2013
Genre: Computers

Provides information and case studies describing the capabilities of NoSQL technologies, covering such topics as data architecture patterns, big data, and security.

Foundations for Architecting Data Solutions

Author: Ted Malaska
Publisher: "O'Reilly Media, Inc."
ISBN: 9781492038696
Release Date: 2018-08-29
Genre: Computers

While many companies ponder implementation details such as distributed processing engines and algorithms for data analysis, this practical book takes a much wider view of big data development, starting with initial planning and moving diligently toward execution. Authors Ted Malaska and Jonathan Seidman guide you through the major components necessary to start, architect, and develop successful big data projects. Everyone from CIOs and COOs to lead architects and developers will explore a variety of big data architectures and applications, from massive data pipelines to web-scale applications. Each chapter addresses a piece of the software development life cycle and identifies patterns to maximize long-term success throughout the life of your project. Start the planning process by considering the key data project types Use guidelines to evaluate and select data management solutions Reduce risk related to technology, your team, and vague requirements Explore system interface design using APIs, REST, and pub/sub systems Choose the right distributed storage system for your big data system Plan and implement metadata collections for your data architecture Use data pipelines to ensure data integrity from source to final storage Evaluate the attributes of various engines for processing the data you collect