Numerical Methods for Engineers

Author: Steven C. Chapra
Publisher:
ISBN: 9814670871
Release Date: 2016-03
Genre: Technology & Engineering

Numerical Methods for Engineers retains the instructional techniques that have made the text so successful. Chapra and Canale's unique approach opens each part of the text with sections called "Motivation" "Mathematical Background" and "Orientation". Each part closes with an "Epilogue" containing "Trade-Offs" "Important Relationships and Formulas" and "Advanced Methods and Additional References". Much more than a summary the Epilogue deepens understanding of what has been learned and provides a peek into more advanced methods. Numerous new or revised problems are drawn from actual engineering practice. The expanded breadth of engineering disciplines covered is especially evident in these exercises which now cover such areas as biotechnology and biomedical engineering. Excellent new examples and case studies span all areas of engineering giving students a broad exposure to various fields in engineering.McGraw-Hill Education's Connect is also available as an optional add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need when they need it how they need it so that class time is more effective. Connect allows the professor to assign homework quizzes and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.

Numerical Methods for Engineers and Scientists Second Edition

Author: Joe D. Hoffman
Publisher: CRC Press
ISBN: 0824704436
Release Date: 2001-05-31
Genre: Mathematics

Emphasizing the finite difference approach for solving differential equations, the second edition of Numerical Methods for Engineers and Scientists presents a methodology for systematically constructing individual computer programs. Providing easy access to accurate solutions to complex scientific and engineering problems, each chapter begins with objectives, a discussion of a representative application, and an outline of special features, summing up with a list of tasks students should be able to complete after reading the chapter- perfect for use as a study guide or for review. The AIAA Journal calls the book "...a good, solid instructional text on the basic tools of numerical analysis."

Numerical Methods for Engineering Applications

Author: Joel H. Ferziger
Publisher: Wiley-Interscience
ISBN: STANFORD:36105020141540
Release Date: 1998-04-17
Genre: Mathematics

State-of-the-art numerical methods for solving complex engineering problems Great strides in computer technology have been made in the years since the popular first edition of this book was published. Several excellent software packages now help engineers solve complex problems. Making the most of these programs requires a working knowledge of the numerical methods on which the programs are based. Numerical Methods for Engineering Application provides that knowledge. While it avoids intense mathematical detail, Numerical Methods for Engineering Application supplies more in-depth explanations of methods than found in the typical engineer's numerical "cookbook." It offers complete coverage of most commonly encountered algebraic, interpolation, and integration problems. Ordinary differential equations are examined in great detail, as are three common types of partial differential equations--parabolic, elliptic, and hyperbolic. The author also explores a wide range of methods for solving initial and boundary value problems. This complete guide to numerical methods for solving engineering problems on computers provides: * Practical advice on how to select the best method for a given problem * Valuable insights into how each method works and why it is the best choice * Complete algorithms and source code for all programs covered * Code from the book and problem-solving programs designed by the author available from the author's website Numerical Methods for Engineering Application is a valuable working resource for engineers and applied physicists. It also serves as an excellent upper-level text for physics and engineering students in courses on modern numerical methods.

Numerical Methods for Engineers

Author: Santosh K Gupta
Publisher: New Age International
ISBN: 8122406513
Release Date: 1995
Genre: Differential quations

This Book Is Intended To Be A Text For Either A First Or A Second Course In Numerical Methods For Students In All Engineering Disciplines. Difficult Concepts, Which Usually Pose Problems To Students Are Explained In Detail And Illustrated With Solved Examples. Enough Elementary Material That Could Be Covered In The First-Level Course Is Included, For Example, Methods For Solving Linear And Nonlinear Algebraic Equations, Interpolation, Differentiation, Integration, And Simple Techniques For Integrating Odes And Pdes (Ordinary And Partial Differential Equations).Advanced Techniques And Concepts That Could Form Part Of A Second-Level Course Includegears Method For Solving Ode-Ivps (Initial Value Problems), Stiffness Of Ode- Ivps, Multiplicity Of Solutions, Convergence Characteristics, The Orthogonal Collocation Method For Solving Ode-Bvps (Boundary Value Problems) And Finite Element Techniques. An Extensive Set Of Graded Problems, Often With Hints, Has Been Included.Some Involve Simple Applications Of The Concepts And Can Be Solved Using A Calculator, While Several Are From Real-Life Situations And Require Writing Computer Programs Or Use Of Library Subroutines. Practice On These Is Expected To Build Up The Reader'S Confidence In Developing Large Computer Codes.

Numerical Methods for Engineers Second Edition

Author: D. Vaughan Griffiths
Publisher: CRC Press
ISBN: 9781420010244
Release Date: 2006-06-22
Genre: Mathematics

Although pseudocodes, Mathematica®, and MATLAB® illustrate how algorithms work, designers of engineering systems write the vast majority of large computer programs in the Fortran language. Using Fortran 95 to solve a range of practical engineering problems, Numerical Methods for Engineers, Second Edition provides an introduction to numerical methods, incorporating theory with concrete computing exercises and programmed examples of the techniques presented. Covering a wide range of numerical applications that have immediate relevancy for engineers, the book describes forty-nine programs in Fortran 95. Many of the programs discussed use a sub-program library called nm_lib that holds twenty-three subroutines and functions. In addition, there is a precision module that controls the precision of calculations. Well-respected in their field, the authors discuss a variety of numerical topics related to engineering. Some of the chapter features include... The numerical solution of sets of linear algebraic equations Roots of single nonlinear equations and sets of nonlinear equations Numerical quadrature, or numerical evaluation of integrals An introduction to the solution of partial differential equations using finite difference and finite element approaches Describing concise programs that are constructed using sub-programs wherever possible, this book presents many different contexts of numerical analysis, forming an excellent introduction to more comprehensive subroutine libraries such as the numerical algorithm group (NAG).

Numerical Methods in Engineering with MATLAB

Author: Jaan Kiusalaas
Publisher: Cambridge University Press
ISBN: 0521852889
Release Date: 2005-08-01
Genre: Computers

Numerical Methods in Engineering with MATLAB®, a student text, and a reference for practicing engineers.

Applied Numerical Methods for Engineers and Scientists

Author: Singiresu S. Rao
Publisher: Pearson College Division
ISBN: UCSD:31822035042886
Release Date: 2002
Genre: Mathematics

This comprehensive book includes over 800 problems including open ended, project type and design problems. Chapter topics include Introduction to Numerical Methods; Solution of Nonlinear Equations; Simultaneous Linear Algebraic Equations; Solution of Matrix Eigenvalue Problem; Curve Fitting and Interpolation; Statistical Methods; Numerical Differentiation; Numerical Integration; Numerical Solution of Ordinary Differential Equations: Initial Value Problems; Numerical Solution of Ordinary Differential Equations: Boundary Value Problems; Numerical Solution of Partial Differential Equations; Numerical Methods of Optimization ;Finite Element Method. This book is intended as a reference for numerical methods in engineering.

Numerical Methods for Engineers Second Edition

Author: D. Vaughan Griffiths
Publisher: CRC Press
ISBN: 0849386101
Release Date: 1991-03-31
Genre: Mathematics

Numerical Methods for Engineers: A Programming Approach is devoted to solving engineering problems using numerical methods. It covers all areas of introductory numerical methods and emphasizes techniques of programming in FORTRAN 77, and developing subprograms using FORTRAN functions and subroutines. In this way, the book serves as an introduction to using powerful mathematical subroutine libraries. Over 40 main programs are provided in the text and all subroutines are listed in the Appendix. Each main program is presented with a sample data-set and output, and all FORTRAN programs and subroutines described in the text can be obtained on disk from the publisher. Numerical Methods for Engineers: A Programming Approach is an excellent choice for undergraduates in all engineering disciplines, providing a much needed bridge between classical mathematics and computer code-based techniques.

Numerical Methods for Engineers and Scientists Using MATLAB

Author: Ramin S. Esfandiari
Publisher: CRC Press
ISBN: 9781466585690
Release Date: 2013-06-04
Genre: Mathematics

Designed to benefit scientific and engineering applications, Numerical Methods for Engineers and Scientists Using MATLAB® focuses on the fundamentals of numerical methods while making use of MATLAB software. The book introduces MATLAB early on and incorporates it throughout the chapters to perform symbolic, graphical, and numerical tasks. The text covers a variety of methods from curve fitting to solving ordinary and partial differential equations. Provides fully worked-out examples showing all details Confirms results through the execution of the user-defined function or the script file Executes built-in functions for re-confirmation, when available Generates plots regularly to shed light on the soundness and significance of the numerical results Created to be user-friendly and easily understandable, Numerical Methods for Engineers and Scientists Using MATLAB® provides background material and a broad introduction to the essentials of MATLAB, specifically its use with numerical methods. Building on this foundation, it introduces techniques for solving equations and focuses on curve fitting and interpolation techniques. It addresses numerical differentiation and integration methods, presents numerical methods for solving initial-value and boundary-value problems, and discusses the matrix eigenvalue problem, which entails numerical methods to approximate a few or all eigenvalues of a matrix. The book then deals with the numerical solution of partial differential equations, specifically those that frequently arise in engineering and science. The book presents a user-defined function or a MATLAB script file for each method, followed by at least one fully worked-out example. When available, MATLAB built-in functions are executed for confirmation of the results. A large set of exercises of varying levels of difficulty appears at the end of each chapter. The concise approach with strong, up-to-date MATLAB integration provided by this book affords readers a thorough knowledge of the fundamentals of numerical methods utilized in various disciplines.

Numerical Methods for Engineers

Author: Steven Chapra
Publisher: McGraw-Hill Higher Education
ISBN: 9780077492168
Release Date: 2014-01-31
Genre: Technology & Engineering

The seventh edition of Chapra and Canale's Numerical Methods for Engineers retains the instructional techniques that have made the text so successful. Chapra and Canale's unique approach opens each part of the text with sections called “Motivation,“ “Mathematical Background,” and “Orientation” Each part closes with an “Epilogue” containing “Trade-Offs,” “Important Relationships and Formulas,” and “Advanced Methods and Additional References.” Much more than a summary, the Epilogue deepens understanding of what has been learned and provides a peek into more advanced methods. Helpful separate Appendices. “Getting Started with MATLAB” and “Getting Started with Mathcad” which make excellent references.

Numerical methods for engineers and scientists

Author: Amos Gilat
Publisher: John Wiley & Sons Inc
ISBN: 0471734403
Release Date: 2008
Genre: Computers

A clear and concise guide to numerical methods and their application Mastering numerical methods has never been easier than with Gilat/Subramaniam\'s Numerical Methods For Engineers and Scientists: An Introduction with Applications Using MATLAB(r). Uniquely accessible and concise, this book takes an innovative approach that integrates the study of numerical methods with hands-on programming practice using the popular MATLAB environment to solve realistic problems in engineering and science. Ideal for both students and professionals who would like to become more adept at numerical methods, Numerical Methods For Engineers and Scientists familiarizes you with: * The mathematical background and fundamentals of numerical methods * Solving nonlinear equations * Solving a system of linear equations * Eigenvalues and Eigenvectors * Function approximation, curve fitting, and interpolation * Differentiation * Integration * First-order and higher-order ODEs * Initial and boundary value problems Using MATLAB\'s built-in functions as tools for solving problems, you will practice applying numerical methods for analysis of real-world problems. All the information is presented in manageable, step-by-step fashion, supported by a large number of annotated examples and end-of-chapter problems. Lucid, carefully structured, and flexibly designed to fulfill a wide range of academic and practical needs, this book will help you develop the skills in numerical methods that will serve you well as a practicing engineer. About the Authors: Amos Gilat, Ph.D., is Professor of Mechanical Engineering at The Ohio State University. Dr. Gilat\'s main research interests are in plasticity, specifically, in developing experimental techniques for testing materials over a wide range of strain rates and temperatures and in investigating constitutive relations for viscoplasticity. Dr. Gilat\'s research has been supported by the National Science Foundation, NASA, Department of Energy, Department of Defense, and various industries. Vish Subramaniam, Ph.D., is Professor of Mechanical Engineering & Chemical Physics at The Ohio State University. Dr. Subramaniam\'s main research interests are in plasma and laser physics and processes, particularly those that involve non-equilibrium phenomena. Dr. Subramaniam\'s research is both experimental and computational, and has been supported by the Department of Defense, National Science Foundation, and numerous industries.

Numerical Methods in Engineering with Python

Author: Jaan Kiusalaas
Publisher: Cambridge University Press
ISBN: 0521852870
Release Date: 2005-07-25
Genre: Computers

Numerical Methods in Engineering with Python, a student text, and a reference for practicing engineers.

Numerical Methods in Engineering Science

Author: Graham de Vahl Davis
Publisher: Springer Science & Business Media
ISBN: 9789401169585
Release Date: 2012-12-06
Genre: Juvenile Nonfiction

This book is designed for an introductory course in numerical methods for students of engineering and science at universities and colleges of advanced education. It is an outgrowth of a course of lectures and tutorials (problem solving sessions) which the author has given for a number of years at the University of New South Wales and elsewhere. The course is normally taught at the rate of 1i hours per week throughout an academic year (28 weeks). It has occasionally been given at double this rate over half the year, but it was found that students had insufficient time to absorb the material and experiment with the methods. The material presented here is rather more than has been taught in anyone year, although all of it has been taught at some time. The book is concerned with the application of numerical methods to the solution of equations - algebraic, transcendental and differential - which will be encountered by students during their training and their careers. The theoretical foundation for the methods is not rigorously covered. Engineers and applied scientists (but not, of course, mathematicians) are more con cerned with using methods than with proving that they can be used. However, they 'must be satisfied that the methods are fit to be used, and it is hoped that students will perform sufficient numerical experiments to con vince themselves of this without the need for more than the minimum of theory which is presented here.

Numerical Methods for Engineers

Author: Bilal M. Ayyub
Publisher: Pearson College Division
ISBN: 0133373614
Release Date: 1996
Genre: Computers

This book introduces numerical methods, emphasizing the practical aspects of their use and establishing their limitations, advantages and disadvantages. It is intended to assist future as well as practicing engineers in fully understanding the fundamentals of numerical methods, most notably their application, limitations and potentials.

Numerical Analysis for Engineers

Author: Bilal Ayyub
Publisher: CRC Press
ISBN: 9781482250367
Release Date: 2015-09-18
Genre: Mathematics

Numerical Analysis for Engineers: Methods and Applications demonstrates the power of numerical methods in the context of solving complex engineering and scientific problems. The book helps to prepare future engineers and assists practicing engineers in understanding the fundamentals of numerical methods, especially their applications, limitations, and potentials. Each chapter contains many computational examples, as well as a section on applications that contain additional engineering examples. Each chapter also includes a set of exercise problems. The problems are designed to meet the needs of instructors in assigning homework and to help students with practicing the fundamental concepts. Although the book was developed with emphasis on engineering and technological problems, the numerical methods can also be used to solve problems in other fields of science.