Open Problems in Topology II

Author: Elliott M. Pearl
Publisher: Elsevier
ISBN: 0080475299
Release Date: 2011-08-11
Genre: Mathematics

This volume is a collection of surveys of research problems in topology and its applications. The topics covered include general topology, set-theoretic topology, continuum theory, topological algebra, dynamical systems, computational topology and functional analysis. * New surveys of research problems in topology * New perspectives on classic problems * Representative surveys of research groups from all around the world

Open problems in topology

Author: J. van Mill
Publisher: North Holland
ISBN: UOM:39015018940943
Release Date: 1990
Genre: Mathematics

From the Introduction: This volume grew from a discussion by the editors on the difficulty of finding good thesis problems for graduate students in topology. Although at any given time we each had our own favorite problems, we acknowledged the need to offer students a wider selection from which to choose a topic peculiar to their interests. One of us remarked, 'Wouldn't it be nice to have a book of current unsolved problems always available to pull down from the shelf?' The other replied 'Why don't we simply produce such a book?' Two years later and not so simply, here is the resulting volume. The intent is to provide not only a source book for thesis-level problems but also a challenge to the best researchers in the field.

Recent Progress in General Topology III

Author: K.P. Hart
Publisher: Springer Science & Business Media
ISBN: 9789462390249
Release Date: 2013-12-11
Genre: Mathematics

The book presents surveys describing recent developments in most of the primary subfields of General Topology, and its applications to Algebra and Analysis during the last decade, following the previous editions (North Holland, 1992 and 2002). The book was prepared in connection with the Prague Topological Symposium, held in 2011. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs from that chosen in 2002. The following areas experienced significant developments: Fractals, Coarse Geometry/Topology, Dimension Theory, Set Theoretic Topology and Dynamical Systems.

Elementary Topology

Author: O. Ya. Viro, O. A. Ivanov, N. Yu. Netsvetaev, V. M. Kharlamov
Publisher: American Mathematical Soc.
ISBN: 0821886258
Release Date:
Genre:


Recent Progress in General Topology II

Author: Miroslav Hušek
Publisher: Elsevier
ISBN: 9780444509802
Release Date: 2002
Genre: Mathematics

The book presents surveys describing recent developments in most of the primary subfields of General Topology and its applications to Algebra and Analysis during the last decade. It follows freely the previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared in connection with the Prague Topological Symposium, held in 2001. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs slightly from those chosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (including Infinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as: R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.

Recent Progress in General Topology II

Author: M. Husek
Publisher: Elsevier
ISBN: 9780080929958
Release Date: 2002-11-13
Genre: Mathematics

The book presents surveys describing recent developments in most of the primary subfields of General Topology and its applications to Algebra and Analysis during the last decade. It follows freely the previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared in connection with the Prague Topological Symposium, held in 2001. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs slightly from those chosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (including Infinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as: R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.

Encyclopedia of General Topology

Author: K.P. Hart
Publisher: Elsevier
ISBN: 0080530869
Release Date: 2003-11-18
Genre: Mathematics

This book is designed for the reader who wants to get a general view of the terminology of General Topology with minimal time and effort. The reader, whom we assume to have only a rudimentary knowledge of set theory, algebra and analysis, will be able to find what they want if they will properly use the index. However, this book contains very few proofs and the reader who wants to study more systematically will find sufficiently many references in the book. Key features: • More terms from General Topology than any other book ever published • Short and informative articles • Authors include the majority of top researchers in the field • Extensive indexing of terms

Problems on Mapping Class Groups and Related Topics

Author: Benson Farb
Publisher: American Mathematical Soc.
ISBN: 9780821838389
Release Date: 2006-09-12
Genre: Mathematics

The appearance of mapping class groups in mathematics is ubiquitous. The book presents 23 papers containing problems about mapping class groups, the moduli space of Riemann surfaces, Teichmuller geometry, and related areas. Each paper focusses completely on open problems and directions. The problems range in scope from specific computations, to broad programs. The goal is to have a rich source of problems which have been formulated explicitly and accessibly. The book is divided into four parts. Part I contains problems on the combinatorial and (co)homological group-theoretic aspects of mapping class groups, and the way in which these relate to problems in geometry and topology. Part II concentrates on connections with classification problems in 3-manifold theory, the theory of symplectic 4-manifolds, and algebraic geometry. A wide variety of problems, from understanding billiard trajectories to the classification of Kleinian groups, can be reduced to differential and synthetic geometry problems about moduli space. Such problems and connections are discussed in Part III. Mapping class groups are related, both concretely and philosophically, to a number of other groups, such as braid groups, lattices in semisimple Lie groups, and automorphism groups of free groups. Part IV concentrates on problems surrounding these relationships. This book should be of interest to anyone studying geometry, topology, algebraic geometry or infinite groups. It is meant to provide inspiration for everyone from graduate students to senior researchers.

Open problems in topology

Author: J. van Mill
Publisher: North Holland
ISBN: UOM:39015018940943
Release Date: 1990
Genre: Mathematics

From the Introduction: This volume grew from a discussion by the editors on the difficulty of finding good thesis problems for graduate students in topology. Although at any given time we each had our own favorite problems, we acknowledged the need to offer students a wider selection from which to choose a topic peculiar to their interests. One of us remarked, 'Wouldn't it be nice to have a book of current unsolved problems always available to pull down from the shelf?' The other replied 'Why don't we simply produce such a book?' Two years later and not so simply, here is the resulting volume. The intent is to provide not only a source book for thesis-level problems but also a challenge to the best researchers in the field.

Topological Optimization and Optimal Transport

Author: Maïtine Bergounioux
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 9783110430509
Release Date: 2017-08-07
Genre: Mathematics

By discussing topics such as shape representations, relaxation theory and optimal transport, trends and synergies of mathematical tools required for optimization of geometry and topology of shapes are explored. Furthermore, applications in science and engineering, including economics, social sciences, biology, physics and image processing are covered. Contents Part I Geometric issues in PDE problems related to the infinity Laplace operator Solution of free boundary problems in the presence of geometric uncertainties Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies High-order topological expansions for Helmholtz problems in 2D On a new phase field model for the approximation of interfacial energies of multiphase systems Optimization of eigenvalues and eigenmodes by using the adjoint method Discrete varifolds and surface approximation Part II Weak Monge–Ampere solutions of the semi-discrete optimal transportation problem Optimal transportation theory with repulsive costs Wardrop equilibria: long-term variant, degenerate anisotropic PDEs and numerical approximations On the Lagrangian branched transport model and the equivalence with its Eulerian formulation On some nonlinear evolution systems which are perturbations of Wasserstein gradient flows Pressureless Euler equations with maximal density constraint: a time-splitting scheme Convergence of a fully discrete variational scheme for a thin-film equatio Interpretation of finite volume discretization schemes for the Fokker–Planck equation as gradient flows for the discrete Wasserstein distance

Ultrafilters and Topologies on Groups

Author: Yevhen G. Zelenyuk
Publisher: Walter de Gruyter
ISBN: 9783110204223
Release Date: 2011
Genre: Mathematics

This book presents the relationship between ultrafilters and topologies on groups. It shows how ultrafilters are used in constructing topologies on groups with extremal properties and how topologies on groups serve in deriving algebraic results aboutultrafilters. Topics covered include: topological and left topological groups, ultrafilter semigroups, local homomorphisms and automorphisms, subgroups and ideal structure of ssG, almost maximal spaces and projectives of finite semigroups, resolvability of groups. This is a self-contained book aimed at graduate students and researchers working in topological algebra and adjacent areas. From the contents: Topological Groups Ultrafilters Topological Spaces with Extremal Properties Left Invariant Topologies and Strongly Discrete Filters Topological Groups with Extremal Properties The Semigroup ssS Ultrafilter Semigroups Finite Groups in ssG Ideal Structure of ssS Almost Maximal Topological Groups and Spaces Resolvability Open Problems "

Film video finder

Author: National Information Center for Educational Media
Publisher:
ISBN: 0937548294
Release Date: 1997
Genre: Performing Arts


Open Problems in Mathematics

Author: John Forbes Nash, Jr.
Publisher: Springer
ISBN: 9783319321622
Release Date: 2016-07-05
Genre: Mathematics

The goal in putting together this unique compilation was to present the current status of the solutions to some of the most essential open problems in pure and applied mathematics. Emphasis is also given to problems in interdisciplinary research for which mathematics plays a key role. This volume comprises highly selected contributions by some of the most eminent mathematicians in the international mathematical community on longstanding problems in very active domains of mathematical research. A joint preface by the two volume editors is followed by a personal farewell to John F. Nash, Jr. written by Michael Th. Rassias. An introduction by Mikhail Gromov highlights some of Nash’s legendary mathematical achievements. The treatment in this book includes open problems in the following fields: algebraic geometry, number theory, analysis, discrete mathematics, PDEs, differential geometry, topology, K-theory, game theory, fluid mechanics, dynamical systems and ergodic theory, cryptography, theoretical computer science, and more. Extensive discussions surrounding the progress made for each problem are designed to reach a wide community of readers, from graduate students and established research mathematicians to physicists, computer scientists, economists, and research scientists who are looking to develop essential and modern new methods and theories to solve a variety of open problems.