Parallel Programming with OpenACC

Author: Rob Farber
Publisher: Newnes
ISBN: 9780124104594
Release Date: 2016-10-14
Genre: Computers

Parallel Programming with OpenACC is a modern, practical guide to implementing dependable computing systems. The book explains how anyone can use OpenACC to quickly ramp-up application performance using high-level code directives called pragmas. The OpenACC directive-based programming model is designed to provide a simple, yet powerful, approach to accelerators without significant programming effort. Author Rob Farber, working with a team of expert contributors, demonstrates how to turn existing applications into portable GPU accelerated programs that demonstrate immediate speedups. The book also helps users get the most from the latest NVIDIA and AMD GPU plus multicore CPU architectures (and soon for Intel® Xeon PhiTM as well). Downloadable example codes provide hands-on OpenACC experience for common problems in scientific, commercial, big-data, and real-time systems. Topics include writing reusable code, asynchronous capabilities, using libraries, multicore clusters, and much more. Each chapter explains how a specific aspect of OpenACC technology fits, how it works, and the pitfalls to avoid. Throughout, the book demonstrates how the use of simple working examples that can be adapted to solve application needs. Presents the simplest way to leverage GPUs to achieve application speedups Shows how OpenACC works, including working examples that can be adapted for application needs Allows readers to download source code and slides from the book's companion web page

OpenACC for Programmers

Author: Sunita Chandrasekaran
Publisher: Addison-Wesley Professional
ISBN: 9780134694344
Release Date: 2017-09-11
Genre: Computers

The Complete Guide to OpenACC for Massively Parallel Programming Scientists and technical professionals can use OpenACC to leverage the immense power of modern GPUs without the complexity traditionally associated with programming them. OpenACC™ for Programmers is one of the first comprehensive and practical overviews of OpenACC for massively parallel programming. This book integrates contributions from 19 leading parallel-programming experts from academia, public research organizations, and industry. The authors and editors explain each key concept behind OpenACC, demonstrate how to use essential OpenACC development tools, and thoroughly explore each OpenACC feature set. Throughout, you’ll find realistic examples, hands-on exercises, and case studies showcasing the efficient use of OpenACC language constructs. You’ll discover how OpenACC’s language constructs can be translated to maximize application performance, and how its standard interface can target multiple platforms via widely used programming languages. Each chapter builds on what you’ve already learned, helping you build practical mastery one step at a time, whether you’re a GPU programmer, scientist, engineer, or student. All example code and exercise solutions are available for download at GitHub. Discover how OpenACC makes scalable parallel programming easier and more practical Walk through the OpenACC spec and learn how OpenACC directive syntax is structured Get productive with OpenACC code editors, compilers, debuggers, and performance analysis tools Build your first real-world OpenACC programs Exploit loop-level parallelism in OpenACC, understand the levels of parallelism available, and maximize accuracy or performance Learn how OpenACC programs are compiled Master OpenACC programming best practices Overcome common performance, portability, and interoperability challenges Efficiently distribute tasks across multiple processors Register your product at informit.com/register for convenient access to downloads, updates, and/or corrections as they become available.

Programming Massively Parallel Processors

Author: David B. Kirk
Publisher: Morgan Kaufmann
ISBN: 9780128119877
Release Date: 2016-11-24
Genre: Computers

Programming Massively Parallel Processors: A Hands-on Approach, Third Edition shows both student and professional alike the basic concepts of parallel programming and GPU architecture, exploring, in detail, various techniques for constructing parallel programs. Case studies demonstrate the development process, detailing computational thinking and ending with effective and efficient parallel programs. Topics of performance, floating-point format, parallel patterns, and dynamic parallelism are covered in-depth. For this new edition, the authors have updated their coverage of CUDA, including coverage of newer libraries, such as CuDNN, moved content that has become less important to appendices, added two new chapters on parallel patterns, and updated case studies to reflect current industry practices. Teaches computational thinking and problem-solving techniques that facilitate high-performance parallel computing Utilizes CUDA version 7.5, NVIDIA's software development tool created specifically for massively parallel environments Contains new and updated case studies Includes coverage of newer libraries, such as CuDNN for Deep Learning

Parallel Programming for Modern High Performance Computing Systems

Author: Pawel Czarnul
Publisher: CRC Press
ISBN: 9781351385794
Release Date: 2018-03-05
Genre: Business & Economics

In view of the growing presence and popularity of multicore and manycore processors, accelerators, and coprocessors, as well as clusters using such computing devices, the development of efficient parallel applications has become a key challenge to be able to exploit the performance of such systems. This book covers the scope of parallel programming for modern high performance computing systems. It first discusses selected and popular state-of-the-art computing devices and systems available today, These include multicore CPUs, manycore (co)processors, such as Intel Xeon Phi, accelerators, such as GPUs, and clusters, as well as programming models supported on these platforms. It next introduces parallelization through important programming paradigms, such as master-slave, geometric Single Program Multiple Data (SPMD) and divide-and-conquer. The practical and useful elements of the most popular and important APIs for programming parallel HPC systems are discussed, including MPI, OpenMP, Pthreads, CUDA, OpenCL, and OpenACC. It also demonstrates, through selected code listings, how selected APIs can be used to implement important programming paradigms. Furthermore, it shows how the codes can be compiled and executed in a Linux environment. The book also presents hybrid codes that integrate selected APIs for potentially multi-level parallelization and utilization of heterogeneous resources, and it shows how to use modern elements of these APIs. Selected optimization techniques are also included, such as overlapping communication and computations implemented using various APIs. Features: Discusses the popular and currently available computing devices and cluster systems Includes typical paradigms used in parallel programs Explores popular APIs for programming parallel applications Provides code templates that can be used for implementation of paradigms Provides hybrid code examples allowing multi-level parallelization Covers the optimization of parallel programs

Parallel Programming

Author: Bertil Schmidt
Publisher: Morgan Kaufmann
ISBN: 9780128044865
Release Date: 2017-11-20
Genre: Computers

Parallel Programming: Concepts and Practice provides an upper level introduction to parallel programming. In addition to covering general parallelism concepts, this text teaches practical programming skills for both shared memory and distributed memory architectures. The authors’ open-source system for automated code evaluation provides easy access to parallel computing resources, making the book particularly suitable for classroom settings. Covers parallel programming approaches for single computer nodes and HPC clusters: OpenMP, multithreading, SIMD vectorization, MPI, UPC++ Contains numerous practical parallel programming exercises Includes access to an automated code evaluation tool that enables students the opportunity to program in a web browser and receive immediate feedback on the result validity of their program Features an example-based teaching of concept to enhance learning outcomes

CUDA Application Design and Development

Author: Rob Farber
Publisher: Elsevier
ISBN: 9780123884268
Release Date: 2011
Genre: Computers

Machine generated contents note: 1. How to think in CUDA 2. Tools to build, debug and profile 3. The GPU performance envelope 4. The CUDA memory subsystems 5. Exploiting the CUDA execution grid 6. MultiGPU applications and scaling 7. Numerical CUDA, libraries and high-level language bindings 8. Mixing CUDA with rendering 9. High Performance Machine Learning 10. Scientific Visualization 11. Multimedia with OpenCV 12. Ultra Low-power Devices: Tegra.

Euro Par 2012 Parallel Processing

Author: Christos Kaklamanis
Publisher: Springer
ISBN: 9783642328206
Release Date: 2012-08-23
Genre: Computers

This book constitutes the thoroughly refereed proceedings of the 18th International Conference, Euro-Par 2012, held in Rhodes Islands, Greece, in August 2012. The 75 revised full papers presented were carefully reviewed and selected from 228 submissions. The papers are organized in topical sections on support tools and environments; performance prediction and evaluation; scheduling and load balancing; high-performance architectures and compilers; parallel and distributed data management; grid, cluster and cloud computing; peer to peer computing; distributed systems and algorithms; parallel and distributed programming; parallel numerical algorithms; multicore and manycore programming; theory and algorithms for parallel computation; high performance network and communication; mobile and ubiquitous computing; high performance and scientific applications; GPU and accelerators computing.

High Performance Computing

Author: Thomas Sterling
Publisher: Morgan Kaufmann
ISBN: 9780124202153
Release Date: 2017-12-15
Genre: Computers

High Performance Computing: Modern Systems and Practices is a fully comprehensive and easily accessible treatment of high performance computing, covering fundamental concepts and essential knowledge while also providing key skills training. With this book, domain scientists will learn how to use supercomputers as a key tool in their quest for new knowledge. In addition, practicing engineers will discover how supercomputers can employ HPC systems and methods to the design and simulation of innovative products, and students will begin their careers with an understanding of possible directions for future research and development in HPC. Those who maintain and administer commodity clusters will find this textbook provides essential coverage of not only what HPC systems do, but how they are used. Covers enabling technologies, system architectures and operating systems, parallel programming languages and algorithms, scientific visualization, correctness and performance debugging tools and methods, GPU accelerators and big data problems Provides numerous examples that explore the basics of supercomputing, while also providing practical training in the real use of high-end computers Helps users with informative and practical examples that build knowledge and skills through incremental steps Features sidebars of background and context to present a live history and culture of this unique field Includes online resources, such as recorded lectures from the authors’ HPC courses

CUDA by Example

Author: Jason Sanders
Publisher: Addison-Wesley Professional
ISBN: 9780132180139
Release Date: 2010-07-19
Genre: Computers

CUDA is a computing architecture designed to facilitate the development of parallel programs. In conjunction with a comprehensive software platform, the CUDA Architecture enables programmers to draw on the immense power of graphics processing units (GPUs) when building high-performance applications. GPUs, of course, have long been available for demanding graphics and game applications. CUDA now brings this valuable resource to programmers working on applications in other domains, including science, engineering, and finance. No knowledge of graphics programming is required—just the ability to program in a modestly extended version of C. CUDA by Example, written by two senior members of the CUDA software platform team, shows programmers how to employ this new technology. The authors introduce each area of CUDA development through working examples. After a concise introduction to the CUDA platform and architecture, as well as a quick-start guide to CUDA C, the book details the techniques and trade-offs associated with each key CUDA feature. You’ll discover when to use each CUDA C extension and how to write CUDA software that delivers truly outstanding performance. Major topics covered include Parallel programming Thread cooperation Constant memory and events Texture memory Graphics interoperability Atomics Streams CUDA C on multiple GPUs Advanced atomics Additional CUDA resources All the CUDA software tools you’ll need are freely available for download from NVIDIA. http://developer.nvidia.com/object/cuda-by-example.html

CUDA Programming

Author: Shane Cook
Publisher: Morgan Kaufmann
ISBN: 9780128029114
Release Date: 2017-10-01
Genre: Computers

CUDA Programming: A Developer's Guide to Parallel Computing with GPUs, Second Edition is a fully revised, updated, practical guide that provides a solid foundation for developers learning parallel programming with CUDA. This guide iincludes updates that cover both the Kepler and Maxwell GPUs from NVIDIA, as well as the latest heterogeneous systems from AMD. Suitable for someone without a parallel programming background or previous CUDA experience, as well as those who already have dabbled in GPU programming, the contents range from installation and getting started, to building your own GPU workstation. This revision includes a new chapter on visualizing data, and new content on the latest CUDA features including data caching, shared memory, and dynamic parallelism. Author Shane Cook also covers the latest host systems and changes to the installation process, NVIDIA’s Parallel NSight IDE, and hardware systems that run CUDA applications. The final new chapter looks ahead to future GPU platforms and releases including on-core ARM CPU and NVlink technologies. Provides a solid foundation in how to program GPUs using in CUDA Discusses multiple options such as libraries, OpenCL, OpenACC and other programming languages Explains how to design and optimize code for several generations of GPUs and platforms Covers the latest debugging and profiling tools

Using OpenMP The Next Step

Author: Ruud van der Pas
Publisher: MIT Press
ISBN: 9780262344029
Release Date: 2017-10-23
Genre: Computers

This book offers an up-to-date, practical tutorial on advanced features in the widely used OpenMP parallel programming model. Building on the previous volume, Using OpenMP: Portable Shared Memory Parallel Programming (MIT Press), this book goes beyond the fundamentals to focus on what has been changed and added to OpenMP since the 2.5 specifications. It emphasizes four major and advanced areas: thread affinity (keeping threads close to their data), accelerators (special hardware to speed up certain operations), tasking (to parallelize algorithms with a less regular execution flow), and SIMD (hardware assisted operations on vectors). As in the earlier volume, the focus is on practical usage, with major new features primarily introduced by example. Examples are restricted to C and C++, but are straightforward enough to be understood by Fortran programmers. After a brief recap of OpenMP 2.5, the book reviews enhancements introduced since 2.5. It then discusses in detail tasking, a major functionality enhancement; Non-Uniform Memory Access (NUMA) architectures, supported by OpenMP; SIMD, or Single Instruction Multiple Data; heterogeneous systems, a new parallel programming model to offload computation to accelerators; and the expected further development of OpenMP.

Multicore and GPU Programming

Author: Gerassimos Barlas
Publisher: Elsevier
ISBN: 9780124171404
Release Date: 2014-12-16
Genre: Computers

Multicore and GPU Programming offers broad coverage of the key parallel computing skillsets: multicore CPU programming and manycore "massively parallel" computing. Using threads, OpenMP, MPI, and CUDA, it teaches the design and development of software capable of taking advantage of today’s computing platforms incorporating CPU and GPU hardware and explains how to transition from sequential programming to a parallel computing paradigm. Presenting material refined over more than a decade of teaching parallel computing, author Gerassimos Barlas minimizes the challenge with multiple examples, extensive case studies, and full source code. Using this book, you can develop programs that run over distributed memory machines using MPI, create multi-threaded applications with either libraries or directives, write optimized applications that balance the workload between available computing resources, and profile and debug programs targeting multicore machines. Comprehensive coverage of all major multicore programming tools, including threads, OpenMP, MPI, and CUDA Demonstrates parallel programming design patterns and examples of how different tools and paradigms can be integrated for superior performance Particular focus on the emerging area of divisible load theory and its impact on load balancing and distributed systems Download source code, examples, and instructor support materials on the book's companion website

Using OpenMP

Author: Barbara Chapman
Publisher: MIT Press
ISBN: 9780262533027
Release Date: 2008
Genre: Computers

A comprehensive overview of OpenMP, the standard application programming interface for shared memory parallel computing--a reference for students and professionals.

Learning Scientific Programming with Python

Author: Christian Hill
Publisher: Cambridge University Press
ISBN: 9781107075412
Release Date: 2016-01-31
Genre: Computers

Learn to master basic programming tasks from scratch with real-life scientific examples in this complete introduction to Python.